You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/parallel_executor.cc

245 lines
8.4 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h"
#include <string>
#include <tuple>
#include <vector>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/nccl_helper.h"
#endif
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/ssa_graph_builder_factory.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace framework {
class ParallelExecutorPrivate {
public:
explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
: places_(places) {}
std::vector<platform::Place> places_;
std::vector<Scope *> local_scopes_;
Scope *global_scope_;
std::unique_ptr<details::SSAGraphExecutor> executor_;
#ifdef PADDLE_WITH_CUDA
std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
#endif
bool own_local_scope_;
bool use_cuda_;
};
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
return member_->local_scopes_;
}
ParallelExecutor::ParallelExecutor(
const std::vector<platform::Place> &places,
const std::unordered_set<std::string> &params,
const std::unordered_set<std::string> &bcast_vars,
const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope, const std::vector<Scope *> &local_scopes,
const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
size_t num_trainers, size_t trainer_id)
: member_(new ParallelExecutorPrivate(places)) {
member_->global_scope_ = scope;
member_->use_cuda_ = exec_strategy.use_cuda_;
// Step 1. Bcast the params to devs.
// Create local scopes
if (local_scopes.empty()) {
member_->own_local_scope_ = true;
member_->local_scopes_.emplace_back(member_->global_scope_);
for (size_t i = 1; i < member_->places_.size(); ++i) {
member_->local_scopes_.emplace_back(&scope->NewScope());
}
} else {
member_->own_local_scope_ = false;
PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
for (size_t i = 0; i < member_->places_.size(); ++i) {
member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
}
}
if (member_->use_cuda_) {
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
ncclUniqueId *nccl_id = nullptr;
if (nccl_id_var != nullptr) {
nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
}
member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
member_->places_, nccl_id, num_trainers, trainer_id));
#else
PADDLE_THROW("Not compiled with CUDA");
#endif
}
if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
BCastParamsToGPUs(bcast_vars);
}
// Startup Program has been run. All local scopes has correct parameters.
// Step 2. Create vars in each scope;
std::vector<details::VariableInfo> var_infos;
for (auto *var : main_program.Block(0).AllVars()) {
var_infos.emplace_back();
var_infos.back().name_ = var->Name();
var_infos.back().type_ = var->GetType();
var_infos.back().persistable_ = var->Persistable();
}
// Step 3. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
details::SSAGraphBuilderFactory builder_factory(
member_->places_, loss_var_name, params, member_->local_scopes_,
build_strategy);
if (member_->use_cuda_) {
#ifdef PADDLE_WITH_CUDA
builder_factory.SetNCCLContextMap(member_->nccl_ctxs_.get());
#else
PADDLE_THROW("Not compiled with CUDA");
#endif
}
member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
exec_strategy, member_->local_scopes_, places,
builder_factory.Create()->Build(main_program)));
member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
exec_strategy, member_->local_scopes_, std::move(var_infos),
member_->places_, std::move(member_->executor_)));
}
void ParallelExecutor::BCastParamsToGPUs(
const std::unordered_set<std::string> &vars) const {
auto *main_scope = member_->local_scopes_[0];
for (auto &var : vars) {
auto *main_var = main_scope->FindVar(var);
if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
continue;
}
auto &main_tensor = main_var->Get<LoDTensor>();
auto &dims = main_tensor.dims();
if (paddle::platform::is_gpu_place(main_tensor.place())) {
#ifdef PADDLE_WITH_CUDA
std::vector<void *> buffers;
size_t numel = main_tensor.numel();
ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
for (size_t i = 0; i < member_->places_.size(); ++i) {
auto place = member_->places_[i];
void *buffer;
if (i == 0) {
buffer = const_cast<void *>(main_tensor.data<void>());
} else {
auto local_scope = member_->local_scopes_[i];
auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
t->Resize(dims);
buffer = t->mutable_data(place, main_tensor.type());
}
buffers.push_back(buffer);
}
PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
"variables' buffer size to bcast NOT equal to places");
{
platform::NCCLGroupGuard guard;
for (size_t i = 0; i < member_->places_.size(); ++i) {
auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
nccl_ctx.comm_, nccl_ctx.stream());
}
member_->nccl_ctxs_->WaitAll();
}
#else
PADDLE_THROW("Not compiled with CUDA");
#endif
} else {
platform::CPUPlace cpu;
for (size_t i = 1; i < member_->places_.size(); ++i) {
auto local_scope = member_->local_scopes_[i];
auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
t->Resize(dims);
t->mutable_data(cpu, main_tensor.type());
paddle::framework::TensorCopy(main_tensor, cpu, t);
}
}
}
}
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
const std::string &fetched_var_name) {
platform::RecordBlock b(0);
auto fetch_data = member_->executor_->Run(fetch_tensors);
*member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
fetch_data;
}
void ParallelExecutor::FeedTensorsIntoLocalScopes(
const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());
for (size_t i = 0; i < tensors.size(); ++i) {
auto &map = tensors[i];
auto *scope = member_->local_scopes_[i];
for (auto &pair : map) {
auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
trg->ShareDataWith(pair.second);
trg->set_lod(pair.second.lod());
}
}
}
void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
const std::unordered_map<std::string, LoDTensor> &tensors) {
for (auto pair : tensors) {
auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
PADDLE_ENFORCE_EQ(
member_->places_.size(), lod_tensors.size(),
"The number of samples of current batch is less than the count of "
"devices, currently, it is not allowed. (%d vs %d)",
member_->places_.size(), lod_tensors.size());
for (size_t j = 0; j < member_->places_.size(); ++j) {
// TODO(panxy0718): Do I need to delete this var?
auto t =
member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
t->ShareDataWith(lod_tensors[j]);
t->set_lod(lod_tensors[j].lod());
}
}
}
ParallelExecutor::~ParallelExecutor() {
if (member_->own_local_scope_) {
for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
member_->global_scope_->DeleteScope(member_->local_scopes_[i]);
}
}
}
} // namespace framework
} // namespace paddle