You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
6.3 KiB
187 lines
6.3 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/selected_rows.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
struct ReAllocateVisitor {
|
|
ReAllocateVisitor(const framework::DDim& dims, framework::Tensor* tensor)
|
|
: dims_(dims), tensor_(tensor) {}
|
|
|
|
template <typename T>
|
|
void operator()() const {
|
|
framework::Tensor cpu_tensor;
|
|
platform::CPUPlace cpu;
|
|
T* ptr = cpu_tensor.mutable_data<T>(dims_, cpu);
|
|
const T* old_ptr =
|
|
tensor_->memory_size() == 0 ? nullptr : tensor_->data<T>();
|
|
if (old_ptr != nullptr) {
|
|
std::copy(old_ptr, old_ptr + tensor_->numel(), ptr);
|
|
}
|
|
tensor_->ShareDataWith(cpu_tensor);
|
|
}
|
|
|
|
framework::DDim dims_;
|
|
framework::Tensor* tensor_;
|
|
};
|
|
|
|
struct TensorCopyVisitor {
|
|
TensorCopyVisitor(framework::Tensor* dst, int64_t dst_offset,
|
|
const framework::Tensor src, int64_t src_offset,
|
|
int64_t size)
|
|
: dst_(dst),
|
|
dst_offset_(dst_offset),
|
|
src_(src),
|
|
src_offset_(src_offset),
|
|
size_(size) {}
|
|
|
|
template <typename T>
|
|
void operator()() const {
|
|
// TODO(Yancey1989): support other place
|
|
platform::CPUPlace cpu;
|
|
memory::Copy(cpu, dst_->mutable_data<T>(cpu) + dst_offset_, cpu,
|
|
src_.data<T>() + src_offset_, size_ * sizeof(T));
|
|
}
|
|
|
|
framework::Tensor* dst_;
|
|
int64_t dst_offset_;
|
|
framework::Tensor src_;
|
|
int64_t src_offset_;
|
|
int64_t size_;
|
|
};
|
|
|
|
void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows,
|
|
const platform::DeviceContext& dev_ctx) {
|
|
{ // the 1st field, uint32_t version
|
|
constexpr uint32_t version = 0;
|
|
os.write(reinterpret_cast<const char*>(&version), sizeof(version));
|
|
}
|
|
{
|
|
// the 2st field, rows information
|
|
auto& rows = selected_rows.rows();
|
|
uint64_t size = rows.size();
|
|
os.write(reinterpret_cast<const char*>(&size), sizeof(size));
|
|
for (uint64_t i = 0; i < size; ++i) {
|
|
os.write(reinterpret_cast<const char*>(&rows[i]), sizeof(rows[i]));
|
|
}
|
|
}
|
|
{
|
|
// the 3st field, the height of SelectedRows
|
|
int64_t height = selected_rows.height();
|
|
os.write(reinterpret_cast<const char*>(&height), sizeof(height));
|
|
}
|
|
// the 4st field, Tensor data
|
|
TensorToStream(os, selected_rows.value(), dev_ctx);
|
|
}
|
|
|
|
void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows,
|
|
const platform::DeviceContext& dev_ctx) {
|
|
{
|
|
// the 1st field, unit32_t version for SelectedRows
|
|
uint32_t version;
|
|
is.read(reinterpret_cast<char*>(&version), sizeof(version));
|
|
PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
|
|
}
|
|
{
|
|
// the 2st field, rows information
|
|
uint64_t size;
|
|
is.read(reinterpret_cast<char*>(&size), sizeof(size));
|
|
auto& rows = *selected_rows->mutable_rows();
|
|
rows.resize(size);
|
|
for (uint64_t i = 0; i < size; ++i) {
|
|
is.read(reinterpret_cast<char*>(&rows[i]), sizeof(int64_t));
|
|
}
|
|
}
|
|
{
|
|
// the 3st field, the height of the SelectedRows
|
|
int64_t height;
|
|
is.read(reinterpret_cast<char*>(&height), sizeof(int64_t));
|
|
selected_rows->set_height(height);
|
|
}
|
|
// the 4st field, tensor which contains the data
|
|
TensorFromStream(is, selected_rows->mutable_value(), dev_ctx);
|
|
}
|
|
|
|
bool SelectedRows::HasKey(int64_t key) const {
|
|
return std::find(rows_.begin(), rows_.end(), key) == rows_.end() ? false
|
|
: true;
|
|
}
|
|
|
|
std::vector<std::pair<int64_t, int64_t>> SelectedRows::Get(
|
|
const std::vector<int64_t>& keys, framework::Tensor* value) const {
|
|
PADDLE_ENFORCE(value->IsInitialized(),
|
|
"The value tensor should be initialized.");
|
|
std::vector<std::pair<int64_t, int64_t>> non_keys_pair;
|
|
if (keys.empty()) {
|
|
VLOG(3) << "keys is empty, please check data!";
|
|
} else {
|
|
int64_t value_width = value_->numel() / value_->dims()[0];
|
|
PADDLE_ENFORCE_EQ(value_width, value->numel() / value->dims()[0],
|
|
"output tensor should have the same shape with table "
|
|
"except the dims[0].");
|
|
|
|
for (size_t i = 0; i < keys.size(); ++i) {
|
|
int64_t index = Index(keys[i]);
|
|
if (index == -1) {
|
|
non_keys_pair.push_back(
|
|
std::make_pair(keys[i], static_cast<int64_t>(i)));
|
|
} else {
|
|
framework::VisitDataType(
|
|
framework::ToDataType(value_->type()),
|
|
TensorCopyVisitor(value, i * value_width, *value_.get(),
|
|
index * value_width, value_width));
|
|
}
|
|
}
|
|
}
|
|
return non_keys_pair;
|
|
}
|
|
|
|
bool SelectedRows::Set(int64_t key, const framework::Tensor& value) {
|
|
PADDLE_ENFORCE(value.IsInitialized(), "The value should be initialized.");
|
|
if (value_->IsInitialized()) {
|
|
PADDLE_ENFORCE_EQ(
|
|
value.type(), value_->type(),
|
|
"The type of the value should be same with the original value");
|
|
}
|
|
PADDLE_ENFORCE_EQ(value.dims()[0], static_cast<size_t>(1),
|
|
"The first dim of value should be 1.");
|
|
std::lock_guard<std::mutex> lock(*auto_grown_mutex_.get());
|
|
auto index = Index(key);
|
|
bool is_new_key = false;
|
|
if (index == -1) {
|
|
rows_.push_back(key);
|
|
index = rows_.size() - 1;
|
|
is_new_key = true;
|
|
// whether need to resize the table
|
|
if (static_cast<int64_t>(rows_.size()) > value_->dims()[0]) {
|
|
auto dims = value_->dims();
|
|
dims[0] = (dims[0] + 1) << 1;
|
|
framework::VisitDataType(framework::ToDataType(value.type()),
|
|
ReAllocateVisitor(dims, value_.get()));
|
|
}
|
|
}
|
|
|
|
framework::VisitDataType(
|
|
framework::ToDataType(value.type()),
|
|
TensorCopyVisitor(value_.get(),
|
|
index * value_->numel() / value_->dims()[0], value,
|
|
static_cast<int64_t>(0), value.numel()));
|
|
return is_new_key;
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|