You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
165 lines
6.2 KiB
165 lines
6.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <algorithm>
|
|
|
|
#include "paddle/fluid/framework/data_type.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/platform/device_context.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
constexpr int64_t kNoPadding = -1;
|
|
|
|
class LookupSparseTableInferShape : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of LookupSparseTableOp should not be null.");
|
|
auto shape_w = ctx->GetInputDim("W");
|
|
auto shape_ids = ctx->GetInputDim("Ids");
|
|
shape_w[0] = shape_ids.size();
|
|
ctx->SetOutputDim("Out", shape_w);
|
|
}
|
|
};
|
|
|
|
class LookupSparseTableOp : public framework::OperatorBase {
|
|
public:
|
|
using framework::OperatorBase::OperatorBase;
|
|
|
|
private:
|
|
void RunImpl(const framework::Scope &scope,
|
|
const platform::Place &dev_place) const override {
|
|
auto out_var = scope.FindVar(Output("Out"));
|
|
auto w_var = scope.FindVar(Input("W"));
|
|
auto ids_var = scope.FindVar(Input("Ids"));
|
|
unsigned int seed = static_cast<unsigned int>(Attr<int>("seed"));
|
|
float min = Attr<float>("min");
|
|
float max = Attr<float>("max");
|
|
bool auto_grown_table = Attr<bool>("auto_grown_table");
|
|
|
|
PADDLE_ENFORCE(out_var->IsType<framework::LoDTensor>(),
|
|
"The type of Out var should be LodTensor.");
|
|
PADDLE_ENFORCE(w_var->IsType<framework::SelectedRows>(),
|
|
"The type of W var should be SelectedRows.");
|
|
PADDLE_ENFORCE(ids_var->IsType<framework::LoDTensor>(),
|
|
"The type of Ids var should be LoDTensor.");
|
|
auto &ids_t = ids_var->Get<framework::LoDTensor>();
|
|
auto out_t = out_var->GetMutable<framework::LoDTensor>();
|
|
auto w_t = w_var->GetMutable<framework::SelectedRows>();
|
|
std::vector<int64_t> keys;
|
|
keys.resize(ids_t.numel());
|
|
for (int64_t i = 0; i < ids_t.numel(); ++i) {
|
|
keys[i] = ids_t.data<int64_t>()[i];
|
|
}
|
|
|
|
// TODO(Yancey1989): support CUDA Place for the sparse table
|
|
platform::CPUPlace cpu;
|
|
auto out_shape = w_t->value().dims();
|
|
out_shape[0] = keys.size();
|
|
out_t->Resize(out_shape);
|
|
out_t->mutable_data(cpu, w_t->value().type());
|
|
PADDLE_ENFORCE_EQ(framework::ToDataType(w_t->value().type()),
|
|
framework::proto::VarType::FP32,
|
|
"The sparse table only support FP32");
|
|
auto non_keys_pair = w_t->Get(keys, out_t);
|
|
if (!auto_grown_table) {
|
|
PADDLE_ENFORCE_EQ(non_keys_pair.size(), static_cast<size_t>(0),
|
|
"there is some keys does exists in the sparse table.");
|
|
}
|
|
auto value_shape = w_t->value().dims();
|
|
value_shape[0] = 1;
|
|
for (const auto &it : non_keys_pair) {
|
|
const auto key = it.first;
|
|
const auto index = it.second;
|
|
framework::Tensor value;
|
|
value.Resize(value_shape);
|
|
auto data = value.mutable_data<float>(cpu);
|
|
|
|
std::minstd_rand engine;
|
|
engine.seed(seed);
|
|
std::uniform_real_distribution<float> dist(min, max);
|
|
int64_t size = value.numel();
|
|
for (int64_t i = 0; i < size; ++i) {
|
|
data[i] = dist(engine);
|
|
}
|
|
w_t->Set(key, value);
|
|
memory::Copy(cpu, out_t->mutable_data<float>(cpu) + index * value.numel(),
|
|
cpu, value.data<float>(), value.numel() * sizeof(float));
|
|
}
|
|
}
|
|
};
|
|
|
|
class LookupSparseTableOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("W",
|
|
"(SelectedRows) The input represents embedding table, "
|
|
"which is a learnable parameter.");
|
|
AddInput("Ids",
|
|
"(LoDTensor) Ids's type should be LoDTensor"
|
|
"THe ids to be looked up in W.");
|
|
AddOutput("Out",
|
|
"(LoDTensor) The lookup results, which have the "
|
|
"same type as W.");
|
|
AddAttr<int64_t>("padding_idx",
|
|
"(int64, default -1) "
|
|
"If the value is -1, it makes no effect to lookup. "
|
|
"Otherwise the given value indicates padding the output "
|
|
"with zeros whenever lookup encounters it in Ids.")
|
|
.SetDefault(kNoPadding);
|
|
AddAttr<float>("min",
|
|
"(float, default -1.0) "
|
|
"Minimum value of uniform random")
|
|
.SetDefault(-1.0f);
|
|
AddAttr<float>("max",
|
|
"(float, default 1.0) "
|
|
"Maximum value of uniform random")
|
|
.SetDefault(1.0f);
|
|
AddAttr<int>("seed",
|
|
"(int, default 0) "
|
|
"Random seed used for generating samples. "
|
|
"0 means use a seed generated by the system."
|
|
"Note that if seed is not 0, this operator will always "
|
|
"generate the same random numbers every time.")
|
|
.SetDefault(0);
|
|
AddAttr<bool>("auto_grown_table",
|
|
"(bool default false)"
|
|
"Whether create new value if for nonexistent key.")
|
|
.SetDefault(true);
|
|
AddComment(R"DOC(
|
|
Lookup Sprase Tablel Operator.
|
|
|
|
This operator is used to perform lookup on parameter W,
|
|
then concatenated into a sparse tensor.
|
|
|
|
The type of Ids(Input) is SelectedRows, the rows of Ids contains
|
|
the ids to be looked up in W;
|
|
if the Id is not in the sparse table, this operator will return a
|
|
random value and set the value into the table for the next looking up.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(lookup_sparse_table, ops::LookupSparseTableOp,
|
|
ops::LookupSparseTableInferShape,
|
|
ops::LookupSparseTableOpMaker,
|
|
paddle::framework::EmptyGradOpMaker);
|