You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/demo/semantic_role_labeling/api_train_v2.py

116 lines
3.5 KiB

import numpy as np
import paddle.v2 as paddle
from model_v2 import db_lstm
UNK_IDX = 0
word_dict_file = './data/wordDict.txt'
label_dict_file = './data/targetDict.txt'
predicate_file = './data/verbDict.txt'
word_dict = dict()
label_dict = dict()
predicate_dict = dict()
with open(word_dict_file, 'r') as f_word, \
open(label_dict_file, 'r') as f_label, \
open(predicate_file, 'r') as f_pre:
for i, line in enumerate(f_word):
w = line.strip()
word_dict[w] = i
for i, line in enumerate(f_label):
w = line.strip()
label_dict[w] = i
for i, line in enumerate(f_pre):
w = line.strip()
predicate_dict[w] = i
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(predicate_dict)
def train_reader(file_name="data/feature"):
def reader():
with open(file_name, 'r') as fdata:
for line in fdata:
sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \
line.strip().split('\t')
words = sentence.split()
sen_len = len(words)
word_slot = [word_dict.get(w, UNK_IDX) for w in words]
predicate_slot = [predicate_dict.get(predicate)] * sen_len
ctx_n2_slot = [word_dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_slot = [word_dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [word_dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_slot = [word_dict.get(ctx_p2, UNK_IDX)] * sen_len
marks = mark.split()
mark_slot = [int(w) for w in marks]
label_list = label.split()
label_slot = [label_dict.get(w) for w in label_list]
yield word_slot, ctx_n2_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, ctx_p2_slot, predicate_slot, mark_slot, label_slot
return reader
def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header for float type.
return np.fromfile(f, dtype=np.float32).reshape(h, w)
def main():
paddle.init(use_gpu=False, trainer_count=1)
# define network topology
crf_cost, crf_dec = db_lstm(word_dict_len, label_dict_len, pred_len)
parameters = paddle.parameters.create([crf_cost, crf_dec])
optimizer = paddle.optimizer.Momentum(momentum=0.01, learning_rate=2e-2)
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
pass
trainer = paddle.trainer.SGD(cost=crf_cost,
parameters=parameters,
update_equation=optimizer)
parameters.set('emb', load_parameter("data/emb", 44068, 32))
reader_dict = {
'word_data': 0,
'ctx_n2_data': 1,
'ctx_n1_data': 2,
'ctx_0_data': 3,
'ctx_p1_data': 4,
'ctx_p2_data': 5,
'verb_data': 6,
'mark_data': 7,
'target': 8,
}
trn_reader = paddle.reader.batched(
paddle.reader.shuffle(
train_reader(), buf_size=8192), batch_size=10)
trainer.train(
reader=trn_reader,
event_handler=event_handler,
num_passes=10000,
reader_dict=reader_dict)
if __name__ == '__main__':
main()