You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dygraph/math_op_patch.py

224 lines
8.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from .. import core
from ..framework import Variable, convert_np_dtype_to_dtype_
from ..layers.layer_function_generator import OpProtoHolder
from . import to_variable, no_grad
_supported_int_dtype_ = [
core.VarDesc.VarType.UINT8,
core.VarDesc.VarType.INT8,
core.VarDesc.VarType.INT16,
core.VarDesc.VarType.INT32,
core.VarDesc.VarType.INT64,
]
def monkey_patch_math_varbase():
"""
Similar to monkey_patch_variable.
The difference is, in dygraph mode, use auto-generated op functions for better performance.
"""
def safe_get_dtype(var):
return var.dtype
@no_grad
def create_tensor(value, dtype, shape):
value = float(value)
inputs = {}
attrs = {
'dtype': dtype,
'shape': shape,
'value': value,
'force_cpu': False
}
outs = core.ops.fill_constant(inputs, attrs)
outs['Out'][0].stop_gradient = True
return outs['Out'][0]
def create_scalar(value, dtype):
return create_tensor(value, dtype, shape=[1])
def astype(self, dtype):
"""
**Notes**:
**The variable must be a** :ref:`api_fluid_Tensor`
Cast a variable to a specified data type.
Args:
self(Variable): The source variable
dtype: The target data type
Returns:
Variable: Variable with new dtype
Examples:
In Static Graph Mode:
.. code-block:: python
import paddle.fluid as fluid
startup_prog = fluid.Program()
main_prog = fluid.Program()
with fluid.program_guard(startup_prog, main_prog):
original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
new_variable = original_variable.astype('int64')
print("new var's dtype is: {}".format(new_variable.dtype))
In Dygraph Mode:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
x = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
original_variable = fluid.dygraph.to_variable(x)
print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
new_variable = original_variable.astype('int64')
print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))
"""
inputs = {'X': [self]}
attrs = {
"in_dtype": self.dtype,
"out_dtype": convert_np_dtype_to_dtype_(dtype)
}
outs = core.ops.cast(inputs, attrs)
return outs['Out'][0]
def _scalar_elementwise_op_(var, scale, bias):
inputs = {'X': [var]}
attrs = {"scale": scale, "bias": bias}
outs = core.ops.scale(inputs, attrs)
return outs['Out'][0]
def _neg_(var):
return _scalar_elementwise_op_(var, -1.0, 0.0)
def _scalar_elementwise_add_(var, value):
return _scalar_elementwise_op_(var, 1.0, value)
def _scalar_elementwise_sub_(var, value):
return _scalar_elementwise_op_(var, 1.0, -value)
def _scalar_elementwise_rsub_(var, value):
return _scalar_elementwise_op_(var, -1.0, value)
def _scalar_elementwise_mul_(var, value):
return _scalar_elementwise_op_(var, value, 0.0)
def _scalar_elementwise_div_(var, value):
return _scalar_elementwise_op_(var, 1.0 / value, 0.0)
def _elemwise_method_creator_(method_name,
op_type,
reverse=False,
scalar_method=None):
def __impl__(self, other_var):
# FIXME(zjl): elementwise_div between integers cannot be converted to scale,
# which may lose accuracy. This is a hot fix for release 1.6.
if scalar_method is not None and not (
op_type == 'elementwise_div' and
self.dtype in _supported_int_dtype_):
if isinstance(other_var, float):
if self.dtype in _supported_int_dtype_:
assert other_var == int(other_var), \
"float value {} cannot convert to integer".format(other_var)
return scalar_method(self, other_var)
elif isinstance(other_var, int):
return scalar_method(self, float(other_var))
lhs_dtype = safe_get_dtype(self)
if not isinstance(other_var, core.VarBase):
if reverse:
other_var = create_tensor(
other_var, dtype=lhs_dtype, shape=self.shape)
else:
# add fill_op
other_var = create_scalar(value=other_var, dtype=lhs_dtype)
rhs_dtype = safe_get_dtype(other_var)
if lhs_dtype != rhs_dtype:
other_var = astype(other_var, lhs_dtype)
if reverse:
tmp = self
self = other_var
other_var = tmp
axis = -1
op = getattr(core.ops, op_type)
inputs = {'X': [self], 'Y': [other_var]}
attrs = {'axis': axis}
outs = op(inputs, attrs)
return outs['Out'][0]
comment = OpProtoHolder.instance().get_op_proto(op_type).comment
__impl__.__doc__ = """
{0}
Args:
self(Variable): left hand variable
other_var(Variable|float|int): right hand variable
Returns:
Variable
""".format(comment)
__impl__.__name__ = method_name
return __impl__
# inject methods
for method_name, op_type, reverse, scalar_method in (
("__add__", "elementwise_add", False, _scalar_elementwise_add_),
# a+b == b+a. Do not need to reverse explicitly
("__radd__", "elementwise_add", False, _scalar_elementwise_add_),
("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_),
("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_),
("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_),
# a*b == b*a. Do not need to reverse explicitly
("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_),
("__div__", "elementwise_div", False, _scalar_elementwise_div_),
("__truediv__", "elementwise_div", False, _scalar_elementwise_div_),
("__rdiv__", "elementwise_div", True, None),
("__rtruediv__", "elementwise_div", True, None),
("__pow__", "elementwise_pow", False, None),
("__rpow__", "elementwise_pow", True, None),
("__floordiv__", "elementwise_floordiv", False, None),
("__mod__", "elementwise_mod", False, None),
# for logical compare
("__eq__", "equal", False, None),
("__ne__", "not_equal", False, None),
("__lt__", "less_than", False, None),
("__le__", "less_equal", False, None),
("__gt__", "greater_than", False, None),
("__ge__", "greater_equal", False, None)):
setattr(core.VarBase, method_name,
_elemwise_method_creator_(method_name, op_type, reverse,
scalar_method))
# b = -a
core.VarBase.__neg__ = _neg_
core.VarBase.astype = astype