You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
224 lines
8.0 KiB
224 lines
8.0 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
from .. import core
|
|
from ..framework import Variable, convert_np_dtype_to_dtype_
|
|
from ..layers.layer_function_generator import OpProtoHolder
|
|
from . import to_variable, no_grad
|
|
|
|
_supported_int_dtype_ = [
|
|
core.VarDesc.VarType.UINT8,
|
|
core.VarDesc.VarType.INT8,
|
|
core.VarDesc.VarType.INT16,
|
|
core.VarDesc.VarType.INT32,
|
|
core.VarDesc.VarType.INT64,
|
|
]
|
|
|
|
|
|
def monkey_patch_math_varbase():
|
|
"""
|
|
Similar to monkey_patch_variable.
|
|
The difference is, in dygraph mode, use auto-generated op functions for better performance.
|
|
"""
|
|
|
|
def safe_get_dtype(var):
|
|
return var.dtype
|
|
|
|
@no_grad
|
|
def create_tensor(value, dtype, shape):
|
|
value = float(value)
|
|
inputs = {}
|
|
attrs = {
|
|
'dtype': dtype,
|
|
'shape': shape,
|
|
'value': value,
|
|
'force_cpu': False
|
|
}
|
|
outs = core.ops.fill_constant(inputs, attrs)
|
|
outs['Out'][0].stop_gradient = True
|
|
return outs['Out'][0]
|
|
|
|
def create_scalar(value, dtype):
|
|
return create_tensor(value, dtype, shape=[1])
|
|
|
|
def astype(self, dtype):
|
|
"""
|
|
**Notes**:
|
|
**The variable must be a** :ref:`api_fluid_Tensor`
|
|
|
|
Cast a variable to a specified data type.
|
|
|
|
Args:
|
|
|
|
self(Variable): The source variable
|
|
|
|
dtype: The target data type
|
|
|
|
Returns:
|
|
Variable: Variable with new dtype
|
|
|
|
Examples:
|
|
In Static Graph Mode:
|
|
|
|
.. code-block:: python
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
startup_prog = fluid.Program()
|
|
main_prog = fluid.Program()
|
|
with fluid.program_guard(startup_prog, main_prog):
|
|
original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
|
|
new_variable = original_variable.astype('int64')
|
|
print("new var's dtype is: {}".format(new_variable.dtype))
|
|
|
|
In Dygraph Mode:
|
|
|
|
.. code-block:: python
|
|
|
|
import paddle.fluid as fluid
|
|
import numpy as np
|
|
|
|
x = np.ones([2, 2], np.float32)
|
|
with fluid.dygraph.guard():
|
|
original_variable = fluid.dygraph.to_variable(x)
|
|
print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
|
|
new_variable = original_variable.astype('int64')
|
|
print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))
|
|
|
|
"""
|
|
inputs = {'X': [self]}
|
|
attrs = {
|
|
"in_dtype": self.dtype,
|
|
"out_dtype": convert_np_dtype_to_dtype_(dtype)
|
|
}
|
|
outs = core.ops.cast(inputs, attrs)
|
|
return outs['Out'][0]
|
|
|
|
def _scalar_elementwise_op_(var, scale, bias):
|
|
inputs = {'X': [var]}
|
|
attrs = {"scale": scale, "bias": bias}
|
|
outs = core.ops.scale(inputs, attrs)
|
|
return outs['Out'][0]
|
|
|
|
def _neg_(var):
|
|
return _scalar_elementwise_op_(var, -1.0, 0.0)
|
|
|
|
def _scalar_elementwise_add_(var, value):
|
|
return _scalar_elementwise_op_(var, 1.0, value)
|
|
|
|
def _scalar_elementwise_sub_(var, value):
|
|
return _scalar_elementwise_op_(var, 1.0, -value)
|
|
|
|
def _scalar_elementwise_rsub_(var, value):
|
|
return _scalar_elementwise_op_(var, -1.0, value)
|
|
|
|
def _scalar_elementwise_mul_(var, value):
|
|
return _scalar_elementwise_op_(var, value, 0.0)
|
|
|
|
def _scalar_elementwise_div_(var, value):
|
|
return _scalar_elementwise_op_(var, 1.0 / value, 0.0)
|
|
|
|
def _elemwise_method_creator_(method_name,
|
|
op_type,
|
|
reverse=False,
|
|
scalar_method=None):
|
|
def __impl__(self, other_var):
|
|
# FIXME(zjl): elementwise_div between integers cannot be converted to scale,
|
|
# which may lose accuracy. This is a hot fix for release 1.6.
|
|
if scalar_method is not None and not (
|
|
op_type == 'elementwise_div' and
|
|
self.dtype in _supported_int_dtype_):
|
|
if isinstance(other_var, float):
|
|
if self.dtype in _supported_int_dtype_:
|
|
assert other_var == int(other_var), \
|
|
"float value {} cannot convert to integer".format(other_var)
|
|
return scalar_method(self, other_var)
|
|
elif isinstance(other_var, int):
|
|
return scalar_method(self, float(other_var))
|
|
|
|
lhs_dtype = safe_get_dtype(self)
|
|
|
|
if not isinstance(other_var, core.VarBase):
|
|
if reverse:
|
|
other_var = create_tensor(
|
|
other_var, dtype=lhs_dtype, shape=self.shape)
|
|
else:
|
|
# add fill_op
|
|
other_var = create_scalar(value=other_var, dtype=lhs_dtype)
|
|
|
|
rhs_dtype = safe_get_dtype(other_var)
|
|
if lhs_dtype != rhs_dtype:
|
|
other_var = astype(other_var, lhs_dtype)
|
|
if reverse:
|
|
tmp = self
|
|
self = other_var
|
|
other_var = tmp
|
|
|
|
axis = -1
|
|
op = getattr(core.ops, op_type)
|
|
inputs = {'X': [self], 'Y': [other_var]}
|
|
attrs = {'axis': axis}
|
|
outs = op(inputs, attrs)
|
|
return outs['Out'][0]
|
|
|
|
comment = OpProtoHolder.instance().get_op_proto(op_type).comment
|
|
|
|
__impl__.__doc__ = """
|
|
{0}
|
|
Args:
|
|
self(Variable): left hand variable
|
|
other_var(Variable|float|int): right hand variable
|
|
|
|
Returns:
|
|
Variable
|
|
""".format(comment)
|
|
__impl__.__name__ = method_name
|
|
return __impl__
|
|
|
|
# inject methods
|
|
for method_name, op_type, reverse, scalar_method in (
|
|
("__add__", "elementwise_add", False, _scalar_elementwise_add_),
|
|
# a+b == b+a. Do not need to reverse explicitly
|
|
("__radd__", "elementwise_add", False, _scalar_elementwise_add_),
|
|
("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_),
|
|
("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_),
|
|
("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_),
|
|
# a*b == b*a. Do not need to reverse explicitly
|
|
("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_),
|
|
("__div__", "elementwise_div", False, _scalar_elementwise_div_),
|
|
("__truediv__", "elementwise_div", False, _scalar_elementwise_div_),
|
|
("__rdiv__", "elementwise_div", True, None),
|
|
("__rtruediv__", "elementwise_div", True, None),
|
|
("__pow__", "elementwise_pow", False, None),
|
|
("__rpow__", "elementwise_pow", True, None),
|
|
("__floordiv__", "elementwise_floordiv", False, None),
|
|
("__mod__", "elementwise_mod", False, None),
|
|
# for logical compare
|
|
("__eq__", "equal", False, None),
|
|
("__ne__", "not_equal", False, None),
|
|
("__lt__", "less_than", False, None),
|
|
("__le__", "less_equal", False, None),
|
|
("__gt__", "greater_than", False, None),
|
|
("__ge__", "greater_equal", False, None)):
|
|
|
|
setattr(core.VarBase, method_name,
|
|
_elemwise_method_creator_(method_name, op_type, reverse,
|
|
scalar_method))
|
|
|
|
# b = -a
|
|
core.VarBase.__neg__ = _neg_
|
|
core.VarBase.astype = astype
|