You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							131 lines
						
					
					
						
							4.9 KiB
						
					
					
				
			
		
		
	
	
							131 lines
						
					
					
						
							4.9 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/operators/rank_loss_op.h"
 | 
						|
#include <string>
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
class RankLossOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  RankLossOp(const std::string &type, const framework::VariableNameMap &inputs,
 | 
						|
             const framework::VariableNameMap &outputs,
 | 
						|
             const framework::AttributeMap &attrs)
 | 
						|
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext *ctx) const override {
 | 
						|
    // input check
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
 | 
						|
 | 
						|
    auto label_dims = ctx->GetInputDim("Label");
 | 
						|
    auto left_dims = ctx->GetInputDim("Left");
 | 
						|
    auto right_dims = ctx->GetInputDim("Right");
 | 
						|
 | 
						|
    PADDLE_ENFORCE((label_dims == left_dims) && (left_dims == right_dims),
 | 
						|
                   "All inputs must have the same size.");
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        (label_dims.size() == 2) && (label_dims[1] == 1),
 | 
						|
        "All inputs must be 2-D tensors with shape [batch_size x 1].");
 | 
						|
    ctx->SetOutputDim("Out", label_dims);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddInput("Label",
 | 
						|
             "(2-D Tensor with shape [batch_size x 1]) "
 | 
						|
             "The label indicating A ranked higher than B or not.");
 | 
						|
    AddInput("Left",
 | 
						|
             "(2-D Tensor with shape [batch_size x 1]) "
 | 
						|
             "The output of RankNet for doc A.");
 | 
						|
    AddInput("Right",
 | 
						|
             "(2-D Tensor with shape [batch_size x 1]) "
 | 
						|
             "The output of RankNet for doc B.");
 | 
						|
    AddOutput("Out",
 | 
						|
              "(2-D Tensor with shape [batch_size x 1]) "
 | 
						|
              "The output loss of RankLoss operator.");
 | 
						|
    AddComment(R"DOC(
 | 
						|
RankLoss Operator.
 | 
						|
 | 
						|
RankLoss operator for RankNet
 | 
						|
(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf). 
 | 
						|
RankNet is a pairwise ranking model with
 | 
						|
one training sample consisting of a pair of doc A and B, and the label P
 | 
						|
indicating that A is ranked higher than B or not:
 | 
						|
 | 
						|
P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
 | 
						|
the input pair.
 | 
						|
 | 
						|
The RankLoss operator takes three inputs: Left (o_i), Right (o_j) and Label
 | 
						|
(P_{i,j}), which represent the output score of RankNet for the two docs and 
 | 
						|
the label respectively, and yields the rank loss C_{i,j} using the following 
 | 
						|
equation:
 | 
						|
 | 
						|
$$
 | 
						|
  C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
 | 
						|
  o_{i,j} =  o_i - o_j  \\
 | 
						|
  \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
 | 
						|
$$
 | 
						|
 | 
						|
The operator can take batch inputs with size batch_size (batch_size >= 1).
 | 
						|
 | 
						|
)DOC");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class RankLossGradOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  RankLossGradOp(const std::string &type,
 | 
						|
                 const framework::VariableNameMap &inputs,
 | 
						|
                 const framework::VariableNameMap &outputs,
 | 
						|
                 const framework::AttributeMap &attrs)
 | 
						|
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext *ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
 | 
						|
                   "Input(Out@GRAD) shouldn't be null.");
 | 
						|
    auto dims = ctx->GetInputDim("Left");
 | 
						|
    auto left_grad_name = framework::GradVarName("Left");
 | 
						|
    auto right_grad_name = framework::GradVarName("Right");
 | 
						|
 | 
						|
    if (ctx->HasOutput(left_grad_name)) {
 | 
						|
      ctx->SetOutputDim(left_grad_name, dims);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ctx->HasOutput(right_grad_name)) {
 | 
						|
      ctx->SetOutputDim(right_grad_name, dims);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
namespace ops = paddle::operators;
 | 
						|
 | 
						|
REGISTER_OPERATOR(rank_loss, ops::RankLossOp, ops::RankLossOpMaker,
 | 
						|
                  paddle::framework::DefaultGradOpDescMaker<true>);
 | 
						|
REGISTER_OPERATOR(rank_loss_grad, ops::RankLossGradOp);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    rank_loss, ops::RankLossKernel<paddle::platform::CPUDeviceContext, float>);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    rank_loss_grad,
 | 
						|
    ops::RankLossGradKernel<paddle::platform::CPUDeviceContext, float>);
 |