You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
4.3 KiB
149 lines
4.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle.fluid as fluid
|
|
import numpy
|
|
import sys
|
|
|
|
TRAIN_FILES = ['train.recordio']
|
|
TEST_FILES = ['test.recordio']
|
|
|
|
DICT_DIM = 89528
|
|
|
|
# embedding dim
|
|
emb_dim = 128
|
|
|
|
# hidden dim
|
|
hid_dim = 128
|
|
|
|
# hidden dim2
|
|
hid_dim2 = 96
|
|
|
|
# class num
|
|
class_dim = 2
|
|
|
|
|
|
def network_cfg(is_train, pass_num=100):
|
|
with fluid.unique_name.guard():
|
|
train_file_obj = fluid.layers.open_files(
|
|
filenames=TRAIN_FILES,
|
|
pass_num=pass_num,
|
|
shapes=[[-1, 1], [-1, 1]],
|
|
lod_levels=[1, 0],
|
|
dtypes=['int64', 'int64'],
|
|
thread_num=1)
|
|
|
|
test_file_obj = fluid.layers.open_files(
|
|
filenames=TEST_FILES,
|
|
pass_num=1,
|
|
shapes=[[-1, 1], [-1, 1]],
|
|
lod_levels=[1, 0],
|
|
dtypes=['int64', 'int64'],
|
|
thread_num=1)
|
|
|
|
if is_train:
|
|
file_obj = fluid.layers.shuffle(train_file_obj, buffer_size=1000)
|
|
else:
|
|
file_obj = test_file_obj
|
|
|
|
file_obj = fluid.layers.double_buffer(
|
|
file_obj,
|
|
name="train_double_buffer" if is_train else 'test_double_buffer')
|
|
|
|
data, label = fluid.layers.read_file(file_obj)
|
|
|
|
emb = fluid.layers.embedding(input=data, size=[DICT_DIM, emb_dim])
|
|
|
|
# sequence conv with window size = 3
|
|
win_size = 3
|
|
conv_3 = fluid.nets.sequence_conv_pool(
|
|
input=emb,
|
|
num_filters=hid_dim,
|
|
filter_size=win_size,
|
|
act="tanh",
|
|
pool_type="max")
|
|
|
|
# fc layer after conv
|
|
fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)
|
|
|
|
# probability of each class
|
|
prediction = fluid.layers.fc(input=[fc_1],
|
|
size=class_dim,
|
|
act="softmax")
|
|
# cross entropy loss
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
|
|
# mean loss
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
acc = fluid.layers.accuracy(input=prediction, label=label)
|
|
|
|
if is_train:
|
|
# SGD optimizer
|
|
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.01)
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
return {
|
|
'loss': avg_cost,
|
|
'log': [avg_cost, acc],
|
|
'file': train_file_obj if is_train else test_file_obj
|
|
}
|
|
|
|
|
|
def main():
|
|
train = fluid.Program()
|
|
startup = fluid.Program()
|
|
|
|
with fluid.program_guard(train, startup):
|
|
train_args = network_cfg(is_train=True)
|
|
|
|
test = fluid.Program()
|
|
|
|
with fluid.program_guard(test, fluid.Program()):
|
|
test_args = network_cfg(is_train=False)
|
|
|
|
# startup
|
|
place = fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place=place)
|
|
exe.run(startup)
|
|
|
|
train_exe = fluid.ParallelExecutor(
|
|
use_cuda=True, loss_name=train_args['loss'].name, main_program=train)
|
|
|
|
fetch_var_list = [var.name for var in train_args['log']]
|
|
for i in xrange(sys.maxint):
|
|
result = map(numpy.array,
|
|
train_exe.run(fetch_list=fetch_var_list
|
|
if i % 1000 == 0 else []))
|
|
if len(result) != 0:
|
|
print 'Train: ', result
|
|
|
|
if i % 1000 == 0:
|
|
test_exe = fluid.ParallelExecutor(
|
|
use_cuda=True, main_program=test, share_vars_from=train_exe)
|
|
loss = []
|
|
acc = []
|
|
try:
|
|
while True:
|
|
loss_np, acc_np = map(
|
|
numpy.array, test_exe.run(fetch_list=fetch_var_list))
|
|
loss.append(loss_np[0])
|
|
acc.append(acc_np[0])
|
|
except:
|
|
test_args['file'].reset()
|
|
print 'TEST: ', numpy.mean(loss), numpy.mean(acc)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|