You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
5.7 KiB
176 lines
5.7 KiB
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import random
|
|
import numpy as np
|
|
import cPickle
|
|
import sys, os
|
|
from PIL import Image
|
|
|
|
from paddle.trainer.config_parser import parse_config
|
|
from paddle.trainer.config_parser import logger
|
|
import py_paddle.swig_paddle as api
|
|
import dataloader
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
def plot_samples(samples):
|
|
fig = plt.figure(figsize=(4, 4))
|
|
gs = gridspec.GridSpec(4, 4)
|
|
gs.update(wspace=0.05, hspace=0.05)
|
|
for i, sample in enumerate(samples):
|
|
plt.subplot(gs[i])
|
|
plt.axis('off')
|
|
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
|
|
|
|
return fig
|
|
|
|
|
|
def CHECK_EQ(a, b):
|
|
assert a == b, "a=%s, b=%s" % (a, b)
|
|
|
|
|
|
def get_fake_samples(generator_machine, batch_size, noise):
|
|
gen_inputs = api.Arguments.createArguments(1)
|
|
gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
|
|
gen_outputs = api.Arguments.createArguments(0)
|
|
generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
|
|
fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
|
|
return fake_samples
|
|
|
|
|
|
def copy_shared_parameters(src, dst):
|
|
'''
|
|
copy the parameters from src to dst
|
|
:param src: the source of the parameters
|
|
:type src: GradientMachine
|
|
:param dst: the destination of the parameters
|
|
:type dst: GradientMachine
|
|
'''
|
|
src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())]
|
|
src_params = dict([(p.getName(), p) for p in src_params])
|
|
|
|
for i in xrange(dst.getParameterSize()):
|
|
dst_param = dst.getParameter(i)
|
|
src_param = src_params.get(dst_param.getName(), None)
|
|
if src_param is None:
|
|
continue
|
|
src_value = src_param.getBuf(api.PARAMETER_VALUE)
|
|
dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
|
|
CHECK_EQ(len(src_value), len(dst_value))
|
|
dst_value.copyFrom(src_value)
|
|
dst_param.setValueUpdated()
|
|
|
|
|
|
def find(iterable, cond):
|
|
for item in iterable:
|
|
if cond(item):
|
|
return item
|
|
return None
|
|
|
|
|
|
def get_layer_size(model_conf, layer_name):
|
|
layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
|
|
assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
|
|
return layer_conf.size
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--use_gpu", default="1", help="1 means use gpu for training")
|
|
parser.add_argument("--gpu_id", default="0", help="the gpu_id parameter")
|
|
args = parser.parse_args()
|
|
use_gpu = args.use_gpu
|
|
assert use_gpu in ["0", "1"]
|
|
|
|
if not os.path.exists("./samples/"):
|
|
os.makedirs("./samples/")
|
|
|
|
if not os.path.exists("./params/"):
|
|
os.makedirs("./params/")
|
|
|
|
api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10',
|
|
'--log_period=1000', '--gpu_id=' + args.gpu_id,
|
|
'--save_dir=' + "./params/")
|
|
|
|
conf = "vae_conf.py"
|
|
|
|
trainer_conf = parse_config(conf, "is_generating=False")
|
|
gener_conf = parse_config(conf, "is_generating=True")
|
|
|
|
batch_size = trainer_conf.opt_config.batch_size
|
|
|
|
noise_dim = get_layer_size(gener_conf.model_config, "noise")
|
|
|
|
mnist = dataloader.MNISTloader(batch_size=batch_size)
|
|
mnist.load_data()
|
|
|
|
training_machine = api.GradientMachine.createFromConfigProto(
|
|
trainer_conf.model_config)
|
|
|
|
generator_machine = api.GradientMachine.createFromConfigProto(
|
|
gener_conf.model_config)
|
|
|
|
trainer = api.Trainer.create(trainer_conf, training_machine)
|
|
|
|
trainer.startTrain()
|
|
|
|
for train_pass in xrange(100):
|
|
trainer.startTrainPass()
|
|
mnist.reset_pointer()
|
|
i = 0
|
|
it = 0
|
|
while mnist.pointer != 0 or i == 0:
|
|
X = mnist.next_batch().astype('float32')
|
|
|
|
inputs = api.Arguments.createArguments(1)
|
|
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(X))
|
|
|
|
trainer.trainOneDataBatch(batch_size, inputs)
|
|
|
|
if it % 1000 == 0:
|
|
|
|
outputs = api.Arguments.createArguments(0)
|
|
training_machine.forward(inputs, outputs, api.PASS_TEST)
|
|
loss = np.mean(outputs.getSlotValue(0).copyToNumpyMat())
|
|
print "\niter: {}".format(str(it).zfill(3))
|
|
print "VAE loss: {}".format(str(loss).zfill(3))
|
|
|
|
#Sync parameters between networks (GradientMachine) at the beginning
|
|
copy_shared_parameters(training_machine, generator_machine)
|
|
|
|
z_samples = np.random.randn(batch_size,
|
|
noise_dim).astype('float32')
|
|
samples = get_fake_samples(generator_machine, batch_size,
|
|
z_samples)
|
|
|
|
#Generating the first 16 images for a picture.
|
|
figure = plot_samples(samples[:16])
|
|
plt.savefig(
|
|
"./samples/{}_{}.png".format(
|
|
str(train_pass).zfill(3), str(i).zfill(3)),
|
|
bbox_inches='tight')
|
|
plt.close(figure)
|
|
i += 1
|
|
it += 1
|
|
|
|
trainer.finishTrainPass()
|
|
trainer.finishTrain()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|