You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/v1_api_demo/vae/vae_train.py

176 lines
5.7 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import random
import numpy as np
import cPickle
import sys, os
from PIL import Image
from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
import dataloader
import matplotlib.pyplot as plt
def plot_samples(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
plt.subplot(gs[i])
plt.axis('off')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
return fig
def CHECK_EQ(a, b):
assert a == b, "a=%s, b=%s" % (a, b)
def get_fake_samples(generator_machine, batch_size, noise):
gen_inputs = api.Arguments.createArguments(1)
gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
gen_outputs = api.Arguments.createArguments(0)
generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
return fake_samples
def copy_shared_parameters(src, dst):
'''
copy the parameters from src to dst
:param src: the source of the parameters
:type src: GradientMachine
:param dst: the destination of the parameters
:type dst: GradientMachine
'''
src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())]
src_params = dict([(p.getName(), p) for p in src_params])
for i in xrange(dst.getParameterSize()):
dst_param = dst.getParameter(i)
src_param = src_params.get(dst_param.getName(), None)
if src_param is None:
continue
src_value = src_param.getBuf(api.PARAMETER_VALUE)
dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
CHECK_EQ(len(src_value), len(dst_value))
dst_value.copyFrom(src_value)
dst_param.setValueUpdated()
def find(iterable, cond):
for item in iterable:
if cond(item):
return item
return None
def get_layer_size(model_conf, layer_name):
layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
return layer_conf.size
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--use_gpu", default="1", help="1 means use gpu for training")
parser.add_argument("--gpu_id", default="0", help="the gpu_id parameter")
args = parser.parse_args()
use_gpu = args.use_gpu
assert use_gpu in ["0", "1"]
if not os.path.exists("./samples/"):
os.makedirs("./samples/")
if not os.path.exists("./params/"):
os.makedirs("./params/")
api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10',
'--log_period=1000', '--gpu_id=' + args.gpu_id,
'--save_dir=' + "./params/")
conf = "vae_conf.py"
trainer_conf = parse_config(conf, "is_generating=False")
gener_conf = parse_config(conf, "is_generating=True")
batch_size = trainer_conf.opt_config.batch_size
noise_dim = get_layer_size(gener_conf.model_config, "noise")
mnist = dataloader.MNISTloader(batch_size=batch_size)
mnist.load_data()
training_machine = api.GradientMachine.createFromConfigProto(
trainer_conf.model_config)
generator_machine = api.GradientMachine.createFromConfigProto(
gener_conf.model_config)
trainer = api.Trainer.create(trainer_conf, training_machine)
trainer.startTrain()
for train_pass in xrange(100):
trainer.startTrainPass()
mnist.reset_pointer()
i = 0
it = 0
while mnist.pointer != 0 or i == 0:
X = mnist.next_batch().astype('float32')
inputs = api.Arguments.createArguments(1)
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(X))
trainer.trainOneDataBatch(batch_size, inputs)
if it % 1000 == 0:
outputs = api.Arguments.createArguments(0)
training_machine.forward(inputs, outputs, api.PASS_TEST)
loss = np.mean(outputs.getSlotValue(0).copyToNumpyMat())
print "\niter: {}".format(str(it).zfill(3))
print "VAE loss: {}".format(str(loss).zfill(3))
#Sync parameters between networks (GradientMachine) at the beginning
copy_shared_parameters(training_machine, generator_machine)
z_samples = np.random.randn(batch_size,
noise_dim).astype('float32')
samples = get_fake_samples(generator_machine, batch_size,
z_samples)
#Generating the first 16 images for a picture.
figure = plot_samples(samples[:16])
plt.savefig(
"./samples/{}_{}.png".format(
str(train_pass).zfill(3), str(i).zfill(3)),
bbox_inches='tight')
plt.close(figure)
i += 1
it += 1
trainer.finishTrainPass()
trainer.finishTrain()
if __name__ == '__main__':
main()