You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/reduce_op_function.h

110 lines
4.1 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using DDim = framework::DDim;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename DeviceContext, typename T, size_t D, size_t R_D,
typename Functor>
void ReduceFunctor(const DeviceContext& context, const framework::Tensor& input,
framework::Tensor* output, const std::vector<int>& dims,
bool keep_dim) {
auto x = EigenTensor<T, D>::From(input);
auto x_rank = static_cast<int>(x.dimensions().size());
auto reduce_dim = Eigen::array<int, R_D>();
std::vector<int> dims_ref = dims;
for (size_t i = 0; i < dims_ref.size(); ++i) {
if (dims_ref[i] < 0) dims_ref[i] = x_rank + dims_ref[i];
reduce_dim[i] = dims_ref[i];
}
// construct the squeezed output tensor
DDim out_dims = output->dims();
if (keep_dim && x_rank > 1) {
const int kDelFlag = -2;
auto dims_vector = framework::vectorize(out_dims);
for (size_t i = 0; i < dims_ref.size(); ++i) {
dims_vector[dims_ref[i]] = kDelFlag;
}
dims_vector.erase(remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
dims_vector.end());
out_dims = framework::make_ddim(dims_vector);
}
auto& place = *context.eigen_device();
Functor functor;
if (D == 1) {
auto out = EigenScalar<T>::From(*output);
functor(place, &x, &out, reduce_dim);
} else {
auto out = EigenTensor<T, (D - R_D)>::From(*output, out_dims);
functor(place, &x, &out, reduce_dim);
}
}
template <typename DeviceContext, typename T, size_t D, typename Functor>
void ReduceGradFunctor(const DeviceContext& context,
const framework::Tensor& input0,
const framework::Tensor& input1,
const framework::Tensor& input2,
framework::Tensor* output,
const std::vector<int>& dims) {
auto x = EigenTensor<T, D>::From(input0);
auto x_grad = EigenTensor<T, D>::From(*output);
auto x_rank = static_cast<int>(x.dimensions().size());
auto x_dims = input0.dims();
auto reduced_dims_v = framework::vectorize(x_dims);
std::vector<int> dims_ref = dims;
Eigen::array<int, D> broadcast_dim;
for (size_t i = 0; i < D; ++i) broadcast_dim[i] = 1;
int broad_cats_times = 1;
for (size_t i = 0; i < dims_ref.size(); ++i) {
if (dims_ref[i] < 0) {
dims_ref[i] = x_rank + dims_ref[i];
}
reduced_dims_v[dims_ref[i]] = 1;
broadcast_dim[dims_ref[i]] = x_dims[dims_ref[i]];
broad_cats_times *= x_dims[dims_ref[i]];
}
auto reduced_dims = framework::make_ddim(reduced_dims_v);
auto x_reduce = EigenTensor<T, D>::From(input1, reduced_dims);
auto x_reduce_grad = EigenTensor<T, D>::From(input2, reduced_dims);
auto& place = *context.eigen_device();
Functor functor;
functor(place, &x, &x_reduce, &x_grad, &x_reduce_grad, broadcast_dim,
broad_cats_times);
}
} // namespace operators
} // namespace paddle