You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/mkldnn/mkldnn_op_test.py

162 lines
6.0 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
def __assert_close(test_case, tensor, np_array, msg, atol=1e-4):
test_case.assertTrue(
np.allclose(
np.array(tensor), np_array, atol=atol), msg)
def check_if_mkldnn_primitives_exist_in_bwd(test_case, op_type, x, out,
out_grad, x_grad):
place = core.CPUPlace()
var_dict = {'x': x, 'out': out, 'out@GRAD': out_grad, 'x@GRAD': x_grad}
var_names = list(var_dict.keys())
ground_truth = {name: var_dict[name] for name in var_names}
program = fluid.Program()
with fluid.program_guard(program):
block = program.global_block()
for name in ground_truth:
block.create_var(
name=name, dtype=np.float32, shape=ground_truth[name].shape)
op = block.append_op(
type=op_type,
inputs={'X': block.var('x'), },
outputs={'Out': block.var('out')},
attrs={'use_mkldnn': True})
# Generate backward op_desc
grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(op.desc,
set(), [])
grad_op_desc = grad_op_desc_list[0]
new_op_desc = block.desc.append_op()
new_op_desc.copy_from(grad_op_desc)
for var_name in grad_op_desc.output_arg_names():
block.desc.var(var_name.encode('ascii'))
grad_op_desc.infer_var_type(block.desc)
grad_op_desc.infer_shape(block.desc)
for arg in grad_op_desc.output_arg_names():
grad_var = block.desc.find_var(arg.encode('ascii'))
grad_var.set_dtype(core.VarDesc.VarType.FP32)
exe = fluid.Executor(place)
# Do at least 2 iterations
for i in range(2):
out = exe.run(
program,
feed={name: var_dict[name]
for name in ['x', 'out@GRAD']},
fetch_list=['x@GRAD', 'out'])
__assert_close(test_case, x_grad, out[0], 'x@GRAD')
def check_if_mkldnn_batchnorm_primitives_exist_in_bwd(
test_case, var_dict, place, shape, data_layout):
var_names = [
'x', 'scale', 'bias', 'mean', 'variance', 'y', 'saved_mean',
'saved_variance'
]
ground_truth = {name: var_dict[name] for name in var_names}
program = fluid.Program()
with fluid.program_guard(program):
block = program.global_block()
for name in ground_truth:
block.create_var(
name=name, dtype='float32', shape=ground_truth[name].shape)
bn_op = block.append_op(
type="batch_norm",
inputs={
"X": block.var('x'),
"Scale": block.var('scale'),
"Bias": block.var('bias'),
"Mean": block.var('mean'),
"Variance": block.var('variance')
},
outputs={
"Y": block.var('y'),
"MeanOut": block.var('mean'), # share memory
"VarianceOut": block.var('variance'), # share memory
"SavedMean": block.var('saved_mean'),
"SavedVariance": block.var('saved_variance')
},
attrs={
"momentum": test_case.momentum,
"epsilon": test_case.epsilon,
"is_test": False,
"data_layout": data_layout,
"use_mkldnn": test_case.use_mkldnn,
"fuse_with_relu": test_case.fuse_with_relu,
"use_global_stats": test_case.use_global_stats
})
block.create_var(
name='y@GRAD', dtype='float32', shape=var_dict['y'].shape)
# generate backward op_desc
grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
bn_op.desc, test_case.no_grad_set, [])
grad_op_desc = grad_op_desc_list[0]
new_op_desc = block.desc.append_op()
new_op_desc.copy_from(grad_op_desc)
for var_name in grad_op_desc.output_arg_names():
block.desc.var(var_name.encode("ascii"))
grad_op_desc.infer_var_type(block.desc)
grad_op_desc.infer_shape(block.desc)
for arg in grad_op_desc.output_arg_names():
grad_var = block.desc.find_var(arg.encode("ascii"))
grad_var.set_dtype(core.VarDesc.VarType.FP32)
program._sync_with_cpp()
exe = fluid.Executor(place)
# Do at least 2 iterations
for i in range(2):
out = exe.run(
program,
feed={
name: var_dict[name]
for name in
['x', 'scale', 'bias', 'mean', 'variance', 'y@GRAD']
},
fetch_list=test_case.fetch_list)
for id, name in enumerate(test_case.fetch_list):
__assert_close(test_case, var_dict[name], out[id], name)
print("MKLDNN op test forward passed: ", str(place), data_layout)
def format_reorder(out, size):
in_n = size[0]
out_h = size[2]
out_w = size[3]
out_c = size[1]
out_tmp = np.zeros((in_n, out_h, out_w, out_c))
for n in range(in_n):
for i in range(out_h):
for j in range(out_w):
for m in range(out_c):
out_tmp[n, i, j, m] = out[n, m, i, j]
return out_tmp.reshape(in_n, out_c, out_h, out_w)