You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
153 lines
5.4 KiB
153 lines
5.4 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid.op import Operator
|
|
import paddle.fluid as fluid
|
|
import paddle
|
|
from paddle.fluid import compiler, Program, program_guard
|
|
|
|
|
|
# Test python API
|
|
class TestFullAPI(unittest.TestCase):
|
|
def test_api(self):
|
|
positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)
|
|
|
|
positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
|
|
shape_tensor_int32 = fluid.data(
|
|
name="shape_tensor_int32", shape=[2], dtype="int32")
|
|
|
|
shape_tensor_int64 = fluid.data(
|
|
name="shape_tensor_int64", shape=[2], dtype="int64")
|
|
|
|
out_1 = paddle.full(
|
|
shape=[1, 2], dtype="float32", fill_value=1.1, device='gpu')
|
|
|
|
out_2 = paddle.full(
|
|
shape=[1, positive_2_int32],
|
|
dtype="float32",
|
|
fill_value=1.1,
|
|
device='cpu')
|
|
|
|
out_3 = paddle.full(
|
|
shape=[1, positive_2_int64],
|
|
dtype="float32",
|
|
fill_value=1.1,
|
|
device='gpu')
|
|
|
|
out_4 = paddle.full(
|
|
shape=shape_tensor_int32,
|
|
dtype="float32",
|
|
fill_value=1.2,
|
|
out=out_3)
|
|
|
|
out_5 = paddle.full(
|
|
shape=shape_tensor_int64,
|
|
dtype="float32",
|
|
fill_value=1.1,
|
|
device='gpu',
|
|
stop_gradient=False)
|
|
|
|
out_6 = paddle.full(
|
|
shape=shape_tensor_int64, dtype=np.float32, fill_value=1.1)
|
|
|
|
val = fluid.layers.fill_constant(shape=[1], dtype=np.float32, value=1.1)
|
|
out_7 = paddle.full(
|
|
shape=shape_tensor_int64, dtype=np.float32, fill_value=val)
|
|
|
|
exe = fluid.Executor(place=fluid.CPUPlace())
|
|
res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
|
|
fluid.default_main_program(),
|
|
feed={
|
|
"shape_tensor_int32": np.array([1, 2]).astype("int32"),
|
|
"shape_tensor_int64": np.array([1, 2]).astype("int64"),
|
|
},
|
|
fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
|
|
|
|
assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
|
|
assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
|
|
assert np.array_equal(res_3, np.full([1, 2], 1.2, dtype="float32"))
|
|
assert np.array_equal(res_4, np.full([1, 2], 1.2, dtype="float32"))
|
|
assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
|
|
assert np.array_equal(res_6, np.full([1, 2], 1.1, dtype="float32"))
|
|
assert np.array_equal(res_7, np.full([1, 2], 1.1, dtype="float32"))
|
|
|
|
|
|
class TestFullOpError(unittest.TestCase):
|
|
def test_errors(self):
|
|
with program_guard(Program(), Program()):
|
|
#for ci coverage
|
|
x1 = fluid.layers.data(name='x1', shape=[1], dtype="int16")
|
|
x2 = np.random.randn(1, 2).astype('int32')
|
|
self.assertRaises(
|
|
ValueError, paddle.full, shape=[1], fill_value=5, dtype='uint4')
|
|
self.assertRaises(
|
|
TypeError,
|
|
paddle.full,
|
|
shape=[1],
|
|
fill_value=5,
|
|
dtype='int32',
|
|
out=x2)
|
|
self.assertRaises(
|
|
TypeError,
|
|
paddle.full,
|
|
shape=[1],
|
|
fill_value=5,
|
|
dtype='int16',
|
|
out=x1)
|
|
|
|
# The argument dtype of full must be one of bool, float16,
|
|
#float32, float64, int32 or int64
|
|
x2 = fluid.layers.data(name='x2', shape=[1], dtype="int32")
|
|
|
|
self.assertRaises(
|
|
TypeError, paddle.full, shape=[1], fill_value=5, dtype='uint8')
|
|
|
|
# The argument shape's type of full_op must be list, tuple or Variable.
|
|
def test_shape_type():
|
|
paddle.full(shape=1, dtype="float32", fill_value=1)
|
|
|
|
self.assertRaises(TypeError, test_shape_type)
|
|
|
|
# The argument shape's size of full_op must not be 0.
|
|
def test_shape_size():
|
|
paddle.full(shape=[], dtype="float32", fill_value=1)
|
|
|
|
self.assertRaises(AssertionError, test_shape_size)
|
|
|
|
# The shape dtype of full op must be int32 or int64.
|
|
def test_shape_tensor_dtype():
|
|
shape = fluid.data(
|
|
name="shape_tensor", shape=[2], dtype="float32")
|
|
paddle.full(shape=shape, dtype="float32", fill_value=1)
|
|
|
|
self.assertRaises(TypeError, test_shape_tensor_dtype)
|
|
|
|
def test_shape_tensor_list_dtype():
|
|
shape = fluid.data(
|
|
name="shape_tensor_list", shape=[1], dtype="bool")
|
|
paddle.full(shape=[shape, 2], dtype="float32", fill_value=1)
|
|
|
|
self.assertRaises(TypeError, test_shape_tensor_list_dtype)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|