You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_l1_loss.py

132 lines
5.1 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
class TestL1Loss(unittest.TestCase):
def test_L1Loss_mean(self):
input_np = np.random.random(size=(10, 1)).astype(np.float32)
label_np = np.random.random(size=(10, 1)).astype(np.float32)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.layers.data(
name='input', shape=[10, 1], dtype='float32')
label = fluid.layers.data(
name='label', shape=[10, 1], dtype='float32')
l1_loss = paddle.nn.loss.L1Loss()
ret = l1_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(
prog,
feed={"input": input_np,
"label": label_np},
fetch_list=[ret])
with fluid.dygraph.guard():
l1_loss = paddle.nn.loss.L1Loss()
dy_ret = l1_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_ret.numpy()
expected = np.mean(np.abs(input_np - label_np))
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
self.assertTrue(dy_result.shape, [1])
def test_L1Loss_sum(self):
input_np = np.random.random(size=(10, 10, 5)).astype(np.float32)
label_np = np.random.random(size=(10, 10, 5)).astype(np.float32)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.layers.data(
name='input', shape=[10, 10, 5], dtype='float32')
label = fluid.layers.data(
name='label', shape=[10, 10, 5], dtype='float32')
l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
ret = l1_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(
prog,
feed={"input": input_np,
"label": label_np},
fetch_list=[ret])
with fluid.dygraph.guard():
l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
dy_ret = l1_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_ret.numpy()
expected = np.sum(np.abs(input_np - label_np))
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
self.assertTrue(dy_result.shape, [1])
def test_L1Loss_none(self):
input_np = np.random.random(size=(10, 5)).astype(np.float32)
label_np = np.random.random(size=(10, 5)).astype(np.float32)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.layers.data(
name='input', shape=[10, 5], dtype='float32')
label = fluid.layers.data(
name='label', shape=[10, 5], dtype='float32')
l1_loss = paddle.nn.loss.L1Loss(reduction='none')
ret = l1_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(
prog,
feed={"input": input_np,
"label": label_np},
fetch_list=[ret])
with fluid.dygraph.guard():
l1_loss = paddle.nn.loss.L1Loss(reduction='none')
dy_ret = l1_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_ret.numpy()
expected = np.abs(input_np - label_np)
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
self.assertTrue(dy_result.shape, input.shape)
if __name__ == "__main__":
unittest.main()