You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_lod_append_op.py

73 lines
2.9 KiB

#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.op import Operator
from paddle.fluid.backward import append_backward
class TestLoDAppendAPI(unittest.TestCase):
def test_api(self, use_cuda=False):
main_program = Program()
with fluid.program_guard(main_program):
x = fluid.layers.data(name='x', shape=[6], dtype='float32')
level = fluid.layers.data(
name='level', shape=[3], dtype='int32', lod_level=0)
result = fluid.layers.lod_append(x, level)
x_i = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0]).astype("float32")
level_i = np.array([0, 2, 6]).astype("int32")
for use_cuda in [False, True]:
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
[out] = exe.run(fluid.default_main_program(),
feed={'x': x_i,
'level': level_i},
fetch_list=[result],
return_numpy=False)
self.assertEqual(out.recursive_sequence_lengths(), [[2, 4]])
class TestLodAppendOpError(unittest.TestCase):
def test_error(self):
# The input(x) must be Variable.
x1 = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float64")
level1 = [0, 2, 4]
self.assertRaises(TypeError, fluid.layers.lod_append, x1, level1)
#The input(level) must be Variable or list.
x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
self.assertRaises(ValueError, fluid.layers.lod_append, x2, 2)
# Input(x) dtype must be float32 or float64 or int32 or int64
for dtype in ["bool", "float16"]:
x3 = fluid.layers.data(name='x3_' + dtype, shape=[4], dtype=dtype)
level3 = fluid.layers.data(
name='level3' + dtype, shape=[4], dtype='int32', lod_level=2)
self.assertRaises(TypeError, fluid.layers.lod_append, x3, level3)
if __name__ == "__main__":
unittest.main()