You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_randint_op.py

174 lines
5.8 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
import paddle
def output_hist(out):
hist, _ = np.histogram(out, range=(-10, 10))
hist = hist.astype("float32")
hist /= float(out.size)
prob = 0.1 * np.ones((10))
return hist, prob
class TestRandintOp(OpTest):
def setUp(self):
self.op_type = "randint"
self.inputs = {}
self.init_attrs()
self.outputs = {"Out": np.zeros((10000, 784)).astype("float32")}
def init_attrs(self):
self.attrs = {"shape": [10000, 784], "low": -10, "high": 10, "seed": 10}
self.output_hist = output_hist
def test_check_output(self):
self.check_output_customized(self.verify_output)
def verify_output(self, outs):
hist, prob = self.output_hist(np.array(outs[0]))
self.assertTrue(
np.allclose(
hist, prob, rtol=0, atol=0.001), "hist: " + str(hist))
class TestRandintOpError(unittest.TestCase):
def test_errors(self):
main_prog = Program()
start_prog = Program()
with program_guard(main_prog, start_prog):
def test_shape():
shape = np.array([2, 3])
paddle.randint(5, shape=shape, dtype='int32')
self.assertRaises(TypeError, test_shape)
def test_dtype():
paddle.randint(5, shape=[32, 32], dtype='float32')
self.assertRaises(TypeError, test_dtype)
def test_low_high():
paddle.randint(low=5, high=5, shape=[32, 32], dtype='int32')
self.assertRaises(ValueError, test_low_high)
class TestRandintOp_attr_tensorlist(OpTest):
def setUp(self):
self.op_type = "randint"
self.new_shape = (10000, 784)
shape_tensor = []
for index, ele in enumerate(self.new_shape):
shape_tensor.append(("x" + str(index), np.ones(
(1)).astype("int64") * ele))
self.inputs = {'ShapeTensorList': shape_tensor}
self.init_attrs()
self.outputs = {"Out": np.zeros((10000, 784)).astype("int32")}
def init_attrs(self):
self.attrs = {"low": -10, "high": 10, "seed": 10}
self.output_hist = output_hist
def test_check_output(self):
self.check_output_customized(self.verify_output)
def verify_output(self, outs):
hist, prob = self.output_hist(np.array(outs[0]))
self.assertTrue(
np.allclose(
hist, prob, rtol=0, atol=0.001), "hist: " + str(hist))
class TestRandint_attr_tensor(OpTest):
def setUp(self):
self.op_type = "randint"
self.inputs = {"ShapeTensor": np.array([10000, 784]).astype("int64")}
self.init_attrs()
self.outputs = {"Out": np.zeros((10000, 784)).astype("int64")}
def init_attrs(self):
self.attrs = {"low": -10, "high": 10, "seed": 10}
self.output_hist = output_hist
def test_check_output(self):
self.check_output_customized(self.verify_output)
def verify_output(self, outs):
hist, prob = self.output_hist(np.array(outs[0]))
self.assertTrue(
np.allclose(
hist, prob, rtol=0, atol=0.001), "hist: " + str(hist))
# Test python API
class TestRandintAPI(unittest.TestCase):
def test_api(self):
startup_program = fluid.Program()
train_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
# results are from [0, 5).
output1 = paddle.randint(5)
# shape is a list and dtype is 'int32'
output2 = paddle.randint(
low=-100, high=100, shape=[64, 64], dtype='int32')
# shape is a tuple and dtype is 'int64'
output3 = paddle.randint(
low=-100, high=100, shape=(32, 32, 3), dtype='int64')
# shape is a tensorlist and dtype is 'float32'
dim_1 = fluid.layers.fill_constant([1], "int64", 32)
dim_2 = fluid.layers.fill_constant([1], "int32", 50)
output4 = paddle.randint(
low=-100, high=100, shape=[dim_1, 5], dtype='int32')
# shape is a tensor and dtype is 'float64'
var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
output5 = paddle.randint(
low=1, high=1000, shape=var_shape, dtype='int64')
place = fluid.CPUPlace()
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup_program)
outs = exe.run(
train_program,
feed={'var_shape': np.array([100, 100]).astype('int64')},
fetch_list=[output1, output2, output3, output4, output5])
class TestRandintDygraphMode(unittest.TestCase):
def test_check_output(self):
with fluid.dygraph.guard():
x = paddle.randint(10, shape=[10], dtype="int32")
x_np = x.numpy()
for i in range(10):
self.assertTrue((x_np[i] >= 0 and x_np[i] < 10))
if __name__ == "__main__":
unittest.main()