You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
5.8 KiB
174 lines
5.8 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid.op import Operator
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import Program, program_guard
|
|
import paddle
|
|
|
|
|
|
def output_hist(out):
|
|
hist, _ = np.histogram(out, range=(-10, 10))
|
|
hist = hist.astype("float32")
|
|
hist /= float(out.size)
|
|
prob = 0.1 * np.ones((10))
|
|
return hist, prob
|
|
|
|
|
|
class TestRandintOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "randint"
|
|
self.inputs = {}
|
|
self.init_attrs()
|
|
self.outputs = {"Out": np.zeros((10000, 784)).astype("float32")}
|
|
|
|
def init_attrs(self):
|
|
self.attrs = {"shape": [10000, 784], "low": -10, "high": 10, "seed": 10}
|
|
self.output_hist = output_hist
|
|
|
|
def test_check_output(self):
|
|
self.check_output_customized(self.verify_output)
|
|
|
|
def verify_output(self, outs):
|
|
hist, prob = self.output_hist(np.array(outs[0]))
|
|
self.assertTrue(
|
|
np.allclose(
|
|
hist, prob, rtol=0, atol=0.001), "hist: " + str(hist))
|
|
|
|
|
|
class TestRandintOpError(unittest.TestCase):
|
|
def test_errors(self):
|
|
main_prog = Program()
|
|
start_prog = Program()
|
|
with program_guard(main_prog, start_prog):
|
|
|
|
def test_shape():
|
|
shape = np.array([2, 3])
|
|
paddle.randint(5, shape=shape, dtype='int32')
|
|
|
|
self.assertRaises(TypeError, test_shape)
|
|
|
|
def test_dtype():
|
|
paddle.randint(5, shape=[32, 32], dtype='float32')
|
|
|
|
self.assertRaises(TypeError, test_dtype)
|
|
|
|
def test_low_high():
|
|
paddle.randint(low=5, high=5, shape=[32, 32], dtype='int32')
|
|
|
|
self.assertRaises(ValueError, test_low_high)
|
|
|
|
|
|
class TestRandintOp_attr_tensorlist(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "randint"
|
|
self.new_shape = (10000, 784)
|
|
shape_tensor = []
|
|
for index, ele in enumerate(self.new_shape):
|
|
shape_tensor.append(("x" + str(index), np.ones(
|
|
(1)).astype("int64") * ele))
|
|
self.inputs = {'ShapeTensorList': shape_tensor}
|
|
self.init_attrs()
|
|
self.outputs = {"Out": np.zeros((10000, 784)).astype("int32")}
|
|
|
|
def init_attrs(self):
|
|
self.attrs = {"low": -10, "high": 10, "seed": 10}
|
|
self.output_hist = output_hist
|
|
|
|
def test_check_output(self):
|
|
self.check_output_customized(self.verify_output)
|
|
|
|
def verify_output(self, outs):
|
|
hist, prob = self.output_hist(np.array(outs[0]))
|
|
self.assertTrue(
|
|
np.allclose(
|
|
hist, prob, rtol=0, atol=0.001), "hist: " + str(hist))
|
|
|
|
|
|
class TestRandint_attr_tensor(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "randint"
|
|
self.inputs = {"ShapeTensor": np.array([10000, 784]).astype("int64")}
|
|
self.init_attrs()
|
|
self.outputs = {"Out": np.zeros((10000, 784)).astype("int64")}
|
|
|
|
def init_attrs(self):
|
|
self.attrs = {"low": -10, "high": 10, "seed": 10}
|
|
self.output_hist = output_hist
|
|
|
|
def test_check_output(self):
|
|
self.check_output_customized(self.verify_output)
|
|
|
|
def verify_output(self, outs):
|
|
hist, prob = self.output_hist(np.array(outs[0]))
|
|
self.assertTrue(
|
|
np.allclose(
|
|
hist, prob, rtol=0, atol=0.001), "hist: " + str(hist))
|
|
|
|
|
|
# Test python API
|
|
class TestRandintAPI(unittest.TestCase):
|
|
def test_api(self):
|
|
startup_program = fluid.Program()
|
|
train_program = fluid.Program()
|
|
with fluid.program_guard(train_program, startup_program):
|
|
# results are from [0, 5).
|
|
output1 = paddle.randint(5)
|
|
# shape is a list and dtype is 'int32'
|
|
output2 = paddle.randint(
|
|
low=-100, high=100, shape=[64, 64], dtype='int32')
|
|
# shape is a tuple and dtype is 'int64'
|
|
output3 = paddle.randint(
|
|
low=-100, high=100, shape=(32, 32, 3), dtype='int64')
|
|
# shape is a tensorlist and dtype is 'float32'
|
|
dim_1 = fluid.layers.fill_constant([1], "int64", 32)
|
|
dim_2 = fluid.layers.fill_constant([1], "int32", 50)
|
|
output4 = paddle.randint(
|
|
low=-100, high=100, shape=[dim_1, 5], dtype='int32')
|
|
# shape is a tensor and dtype is 'float64'
|
|
var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
|
|
output5 = paddle.randint(
|
|
low=1, high=1000, shape=var_shape, dtype='int64')
|
|
|
|
place = fluid.CPUPlace()
|
|
if fluid.core.is_compiled_with_cuda():
|
|
place = fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
|
|
exe.run(startup_program)
|
|
outs = exe.run(
|
|
train_program,
|
|
feed={'var_shape': np.array([100, 100]).astype('int64')},
|
|
fetch_list=[output1, output2, output3, output4, output5])
|
|
|
|
|
|
class TestRandintDygraphMode(unittest.TestCase):
|
|
def test_check_output(self):
|
|
with fluid.dygraph.guard():
|
|
x = paddle.randint(10, shape=[10], dtype="int32")
|
|
x_np = x.numpy()
|
|
for i in range(10):
|
|
self.assertTrue((x_np[i] >= 0 and x_np[i] < 10))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|