You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_randn_op.py

110 lines
4.2 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard
class TestRandnOp(unittest.TestCase):
def test_api(self):
x1 = paddle.randn(shape=[1000, 784], dtype='float32')
x2 = paddle.randn(shape=[1000, 784], dtype='float64')
x3 = fluid.layers.fill_constant(
shape=[1000, 784], dtype='float32', value=0)
paddle.randn(shape=[1000, 784], out=x3, dtype='float32')
x4 = paddle.randn(shape=[1000, 784], dtype='float32', device='cpu')
x5 = paddle.randn(shape=[1000, 784], dtype='float32', device='gpu')
x6 = paddle.randn(
shape=[1000, 784],
dtype='float32',
device='gpu',
stop_gradient=False)
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
res = exe.run(fluid.default_main_program(),
feed={},
fetch_list=[x1, x2, x3, x4, x5, x6])
self.assertAlmostEqual(np.mean(res[0]), .0, delta=0.1)
self.assertAlmostEqual(np.std(res[0]), 1., delta=0.1)
self.assertAlmostEqual(np.mean(res[1]), .0, delta=0.1)
self.assertAlmostEqual(np.std(res[1]), 1., delta=0.1)
self.assertAlmostEqual(np.mean(res[2]), .0, delta=0.1)
self.assertAlmostEqual(np.std(res[2]), 1., delta=0.1)
self.assertAlmostEqual(np.mean(res[3]), .0, delta=0.1)
self.assertAlmostEqual(np.std(res[3]), 1., delta=0.1)
self.assertAlmostEqual(np.mean(res[4]), .0, delta=0.1)
self.assertAlmostEqual(np.std(res[4]), 1., delta=0.1)
self.assertAlmostEqual(np.mean(res[5]), .0, delta=0.1)
self.assertAlmostEqual(np.std(res[5]), 1., delta=0.1)
class TestRandnOpError(unittest.TestCase):
def test_error(self):
with program_guard(Program(), Program()):
# The argument shape's size of randn_op should not be 0.
def test_shape_size():
out = paddle.randn(shape=[])
self.assertRaises(AssertionError, test_shape_size)
# The argument shape's type of randn_op should be list or tuple.
def test_shape_type():
out = paddle.randn(shape=1)
self.assertRaises(TypeError, test_shape_type)
# The argument dtype of randn_op should be float32 or float64.
def test_dtype_float16():
out = paddle.randn(shape=[1, 2], dtype='float16')
self.assertRaises(TypeError, test_dtype_float16)
# The argument dtype of randn_op should be float32 or float64.
def test_dtype_int32():
out = paddle.randn(shape=[1, 2], dtype='int32')
self.assertRaises(TypeError, test_dtype_int32)
# The argument dtype of randn_op should be float32 or float64.
def test_dtype_int64():
out = paddle.randn(shape=[1, 2], dtype='int64')
self.assertRaises(TypeError, test_dtype_int64)
# The argument dtype of randn_op should be float32 or float64.
def test_dtype_uint8():
out = paddle.randn(shape=[1, 2], dtype='uint8')
self.assertRaises(TypeError, test_dtype_uint8)
# The argument dtype of randn_op should be float32 or float64.
def test_dtype_bool():
out = paddle.randn(shape=[1, 2], dtype='bool')
self.assertRaises(TypeError, test_dtype_bool)
if __name__ == "__main__":
unittest.main()