You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/layer.py

287 lines
9.6 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.
The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.
```python
def network_config():
img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
inference = paddle.trainer_config_helpers.fc_layer(
input=img,
size=10,
act=paddle.trainer_config_helpers.SoftmaxActivation())
cost = paddle.trainer_config_helpers.classification_cost(
input=inference,
label=paddle.trainer_config_helpers.data_layer(name="label", size=10))
proto_desc = parse_network_config(network_config)
```
When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.
The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:
```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
input=inference,
label=paddle.v2.layer.data(name="label", size=10))
parameters = paddle.v2.parameters.create(cost)
```
This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.
Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
import collections
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
import activation
import data_type
__all__ = [
'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
'cross_entropy_cost'
]
def parse_network(*outputs):
"""
parse all output layers and then generate a model config proto.
:param outputs:
:return:
"""
def __real_func__():
context = dict()
real_output = [each.to_proto(context=context) for each in outputs]
conf_helps.outputs(real_output)
return __parse__(__real_func__)
class Layer(object):
def __init__(self, name, parent_layers, step_input=None):
assert isinstance(parent_layers, dict)
assert isinstance(name, basestring)
self.name = name
self.step_input = step_input
self.__parent_layers__ = parent_layers
def to_proto(self, context):
"""
function to set proto attribute
"""
kwargs = dict()
for layer_name in self.__parent_layers__:
if not isinstance(self.__parent_layers__[layer_name],
collections.Sequence):
v1_layer = self.__parent_layers__[layer_name].to_proto(
context=context)
else:
v1_layer = map(lambda x: x.to_proto(context=context),
self.__parent_layers__[layer_name])
if layer_name == "input" and self.step_input is not None:
v1_layer.insert(0, self.step_input)
kwargs[layer_name] = v1_layer
# memory may have the same name with some layer
if isinstance(self, MemoryV2):
return self.to_proto_impl(**kwargs)
if self.name not in context:
context[self.name] = self.to_proto_impl(**kwargs)
return context[self.name]
def to_proto_impl(self, **kwargs):
raise NotImplementedError()
def __convert_to_v2__(method_name, name_prefix, parent_names):
if name_prefix is not None:
wrapper = wrap_name_default(name_prefix=name_prefix)
else:
wrapper = None
class V2LayerImpl(Layer):
def __init__(self, name=None, step_input=None, **kwargs):
parent_layers = dict()
other_kwargs = dict()
for pname in parent_names:
parent_layers[pname] = kwargs[pname]
for key in kwargs.keys():
if key not in parent_names:
other_kwargs[key] = kwargs[key]
super(V2LayerImpl, self).__init__(name, parent_layers, step_input)
self.__other_kwargs__ = other_kwargs
if wrapper is not None:
__init__ = wrapper(__init__)
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, method_name)(name=self.name, **args)
return V2LayerImpl
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""
class DataLayerV2(Layer):
def __init__(self, name, type, **kwargs):
assert isinstance(type, data_type.InputType)
self.type = type
self.__method_name__ = 'data_layer'
self.__kwargs__ = kwargs
super(DataLayerV2, self).__init__(name=name, parent_layers=dict())
def to_proto_impl(self, **kwargs):
args = dict()
args['size'] = self.type.dim
for each in kwargs:
args[each] = kwargs[each]
for each in self.__kwargs__:
args[each] = self.__kwargs__[each]
return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
class MemoryV2(Layer):
def __init__(self, name, size, **kwargs):
self.name = name
self.size = size
self.__kwargs__ = kwargs
super(MemoryV2, self).__init__(name=name, parent_layers=dict())
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__kwargs__:
args[each] = self.__kwargs__[each]
return conf_helps.memory(name=self.name, size=self.size, **args)
data = DataLayerV2
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
'maxid_layer', name_prefix='maxid_layer', parent_names=['input'])
classification_cost = __convert_to_v2__(
'classification_cost',
name_prefix='classification_cost',
parent_names=['input', 'label'])
cross_entropy_cost = __convert_to_v2__(
'cross_entropy',
name_prefix='cross_entropy',
parent_names=['input', 'label'])
embedding = __convert_to_v2__(
'embedding_layer', name_prefix='embedding', parent_names=['input'])
last_seq = __convert_to_v2__(
'last_seq', name_prefix='last_seq', parent_names=['input'])
recurrent_group = __convert_to_v2__(
'recurrent_group', name_prefix='recurrent_layer', parent_names=['input'])
memory = MemoryV2
if __name__ == '__main__':
pixel = data(name='pixel', type=data_type.dense_vector(784))
label = data(name='label', type=data_type.integer_value(10))
hidden = fc(input=pixel, size=100, act=conf_helps.SigmoidActivation())
inference = fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation())
maxid = max_id(input=inference)
cost1 = classification_cost(input=inference, label=label)
cost2 = cross_entropy_cost(input=inference, label=label)
mem = memory(name="rnn_state", size=10)
# print parse_network(cost1)
# print parse_network(cost2)
# print parse_network(cost1, cost2)
# print parse_network(cost2)
# print parse_network(inference, maxid)
dict_dim = 10
word_dim = 8
hidden_dim = 8
label_dim = 3
def step(y):
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
out = conf_helps.fc_layer(
input=[y, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
def test():
data1 = conf_helps.data_layer(name="word", size=dict_dim)
embd = conf_helps.embedding_layer(input=data1, size=word_dim)
conf_helps.recurrent_group(name="rnn", step=step, input=embd)
# print __parse__(test)
# yyyyyyyy
def new_step(y):
mem = memory(name="rnn_state", size=hidden_dim)
out = fc(input=[mem],
step_input=y,
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out.to_proto(dict())
data1 = data(name="word", type=data_type.integer_value(dict_dim))
embd = embedding(input=data1, size=word_dim)
aaa = recurrent_group(name="rnn", step=new_step, input=embd)
print parse_network(aaa)