You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
6.9 KiB
212 lines
6.9 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import argparse
|
|
import time
|
|
import math
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.profiler as profiler
|
|
from paddle.fluid import core
|
|
import unittest
|
|
from multiprocessing import Process
|
|
import os
|
|
import signal
|
|
from functools import reduce
|
|
|
|
SEED = 1
|
|
DTYPE = "float32"
|
|
paddle.dataset.mnist.fetch()
|
|
|
|
|
|
# random seed must set before configuring the network.
|
|
# fluid.default_startup_program().random_seed = SEED
|
|
def cnn_model(data):
|
|
conv_pool_1 = fluid.nets.simple_img_conv_pool(
|
|
input=data,
|
|
filter_size=5,
|
|
num_filters=20,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
act="relu")
|
|
conv_pool_2 = fluid.nets.simple_img_conv_pool(
|
|
input=conv_pool_1,
|
|
filter_size=5,
|
|
num_filters=50,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
act="relu")
|
|
|
|
# TODO(dzhwinter) : refine the initializer and random seed settting
|
|
SIZE = 10
|
|
input_shape = conv_pool_2.shape
|
|
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
|
|
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
|
|
|
|
predict = fluid.layers.fc(
|
|
input=conv_pool_2,
|
|
size=SIZE,
|
|
act="softmax",
|
|
param_attr=fluid.param_attr.ParamAttr(
|
|
initializer=fluid.initializer.NormalInitializer(
|
|
loc=0.0, scale=scale)))
|
|
return predict
|
|
|
|
|
|
def get_model(batch_size):
|
|
# Input data
|
|
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
# Train program
|
|
predict = cnn_model(images)
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
# Evaluator
|
|
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
|
|
batch_acc = fluid.layers.accuracy(
|
|
input=predict, label=label, total=batch_size_tensor)
|
|
|
|
inference_program = fluid.default_main_program().clone()
|
|
# Optimization
|
|
opt = fluid.optimizer.AdamOptimizer(
|
|
learning_rate=0.001, beta1=0.9, beta2=0.999)
|
|
|
|
# Reader
|
|
train_reader = paddle.batch(
|
|
paddle.dataset.mnist.train(), batch_size=batch_size)
|
|
test_reader = paddle.batch(
|
|
paddle.dataset.mnist.test(), batch_size=batch_size)
|
|
opt.minimize(avg_cost)
|
|
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict
|
|
|
|
|
|
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
|
|
t = fluid.DistributeTranspiler()
|
|
t.transpile(
|
|
trainer_id=trainer_id,
|
|
program=main_program,
|
|
pservers=pserver_endpoints,
|
|
trainers=trainers)
|
|
return t
|
|
|
|
|
|
def run_pserver(pserver_endpoints, trainers, current_endpoint):
|
|
get_model(batch_size=20)
|
|
t = get_transpiler(0,
|
|
fluid.default_main_program(), pserver_endpoints,
|
|
trainers)
|
|
pserver_prog = t.get_pserver_program(current_endpoint)
|
|
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
|
|
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
exe.run(startup_prog)
|
|
|
|
exe.run(pserver_prog)
|
|
|
|
|
|
class TestDistMnist(unittest.TestCase):
|
|
def setUp(self):
|
|
self._trainers = 1
|
|
self._pservers = 1
|
|
self._ps_endpoints = "127.0.0.1:9123"
|
|
|
|
def start_pserver(self, endpoint):
|
|
p = Process(
|
|
target=run_pserver,
|
|
args=(self._ps_endpoints, self._trainers, endpoint))
|
|
p.start()
|
|
return p.pid
|
|
|
|
def _wait_ps_ready(self, pid):
|
|
retry_times = 5
|
|
while True:
|
|
assert retry_times >= 0, "wait ps ready failed"
|
|
time.sleep(1)
|
|
try:
|
|
# the listen_and_serv_op would touch a file which contains the listen port
|
|
# on the /tmp directory until it was ready to process all the RPC call.
|
|
os.stat("/tmp/paddle.%d.port" % pid)
|
|
return
|
|
except os.error:
|
|
retry_times -= 1
|
|
|
|
def stop_pserver(self, pid):
|
|
os.kill(pid, signal.SIGTERM)
|
|
|
|
def test_with_place(self):
|
|
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
|
|
pserver_pid = self.start_pserver(self._ps_endpoints)
|
|
self._wait_ps_ready(pserver_pid)
|
|
|
|
self.run_trainer(p, 0)
|
|
|
|
self.stop_pserver(pserver_pid)
|
|
|
|
def run_trainer(self, place, trainer_id):
|
|
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = get_model(
|
|
batch_size=20)
|
|
t = get_transpiler(trainer_id,
|
|
fluid.default_main_program(), self._ps_endpoints,
|
|
self._trainers)
|
|
|
|
trainer_prog = t.get_trainer_program()
|
|
|
|
exe = fluid.Executor(place)
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
feed_var_list = [
|
|
var for var in trainer_prog.global_block().vars.values()
|
|
if var.is_data
|
|
]
|
|
|
|
feeder = fluid.DataFeeder(feed_var_list, place)
|
|
for pass_id in range(10):
|
|
for batch_id, data in enumerate(train_reader()):
|
|
exe.run(trainer_prog, feed=feeder.feed(data))
|
|
|
|
if (batch_id + 1) % 10 == 0:
|
|
acc_set = []
|
|
avg_loss_set = []
|
|
for test_data in test_reader():
|
|
acc_np, avg_loss_np = exe.run(
|
|
program=test_program,
|
|
feed=feeder.feed(test_data),
|
|
fetch_list=[batch_acc, avg_cost])
|
|
acc_set.append(float(acc_np))
|
|
avg_loss_set.append(float(avg_loss_np))
|
|
# get test acc and loss
|
|
acc_val = np.array(acc_set).mean()
|
|
avg_loss_val = np.array(avg_loss_set).mean()
|
|
if float(acc_val
|
|
) > 0.8: # Smaller value to increase CI speed
|
|
return
|
|
else:
|
|
print(
|
|
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
|
|
format(pass_id, batch_id + 1,
|
|
float(avg_loss_val), float(acc_val)))
|
|
if math.isnan(float(avg_loss_val)):
|
|
assert ("got Nan loss, training failed.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|