You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/profiler.py

106 lines
4.2 KiB

import paddle.v2.fluid.core as core
from contextlib import contextmanager
import os
__all__ = ['CudaProfiler']
NVPROF_CONFIG = [
"gpustarttimestamp",
"gpuendtimestamp",
"gridsize3d",
"threadblocksize",
"streamid",
"enableonstart 0",
"conckerneltrace",
]
@contextmanager
def cuda_profiler(output_file, output_mode=None, config=None):
"""The CUDA profiler.
This fuctions is used to profile CUDA program by CUDA runtime application
programming interface. The profiling result will be written into
`output_file` with Key-Value pair format or Comma separated values format.
The user can set the output mode by `output_mode` argument and set the
counters/options for profiling by `config` argument. The default config
is ['gpustarttimestamp', 'gpustarttimestamp', 'gridsize3d',
'threadblocksize', 'streamid', 'enableonstart 0', 'conckerneltrace'].
Args:
output_file (string) : The output file name, the result will be
written into this file.
output_mode (string) : The output mode has Key-Value pair format and
Comma separated values format. It should be 'kvp' or 'csv'.
config (list of string) : The profiler options and counters can refer
to "Compute Command Line Profiler User Guide".
"""
if output_mode is None:
output_mode = 'csv'
if output_mode not in ['kvp', 'csv']:
raise ValueError("The output mode must be 'kvp' or 'csv'.")
config = NVPROF_CONFIG if config is None else config
config_file = 'nvprof_config_file'
with open(config_file, 'wb') as fp:
fp.writelines(["%s\n" % item for item in config])
core.nvprof_init(output_file, output_mode, config_file)
# Enables profiler collection by the active CUDA profiling tool.
core.nvprof_start()
yield
# Disables profiler collection.
core.nvprof_stop()
os.remove(config_file)
def reset_profiler():
"""The profiler clear interface.
reset_profiler will clear the previous time record.
"""
core.reset_profiler()
@contextmanager
def profiler(state, sorted_key=None):
"""The profiler interface.
Different from cuda_profiler, this profiler can be used to profile both CPU
and GPU program. By defalut, it records the CPU and GPU operator kernels,
if you want to profile other program, you can refer the profiling tutorial
to add more records.
Args:
state (string) : The profiling state, It should be 'CPU' or 'GPU'.
Although users may define CPUPlace or CUDAPlace when using Fluid,
the profiler doesn't get the state based on this Place. Since the
implementation is an independent part from the Fluid.
sorted_key (string) : If None, the profiling results will be printed
in the order of first end time of events. Otherwise, the profiling
results will be sorted by the this flag. This flag should be one
of 'calls', 'total', 'max', 'min' or 'ave'.
The `calls` means sorting by the number of calls.
The `total` means sorting by the total execution time.
The `max` means sorting by the maximum execution time.
The `min` means sorting by the minimum execution time.
The `ave` means sorting by the average execution time.
"""
if state not in ['CPU', 'GPU']:
raise ValueError("The state must be 'CPU' or 'GPU'.")
prof_state = core.ProfilerState.kCUDA if state == "GPU" else core.ProfilerState.kCPU
core.enable_profiler(prof_state)
yield
if sorted_key not in ['calls', 'total', 'max', 'min', 'ave']:
raise ValueError("The state must be in 'calls', 'total', "
"'max', 'min', 'ave'")
sorted_key = 'default' if sorted_key is None else sorted_key
key_map = {
'default': core.EventSortingKey.kDefault,
'calls': core.EventSortingKey.kCalls,
'total': core.EventSortingKey.kTotal,
'max': core.EventSortingKey.kMax,
'min': core.EventSortingKey.kMin,
'ave': core.EventSortingKey.kAve,
}
# TODO(qingqing) : redirect C++ ostream to Python stream.
# with core.ostream_redirect(stdout=True, stderr=True):
core.disable_profiler(key_map[sorted_key])