You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
406 lines
14 KiB
406 lines
14 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
import paddle
|
|
from .strategy_compiler import StrategyCompiler
|
|
from .distributed_strategy import DistributedStrategy
|
|
from .meta_optimizer_factory import MetaOptimizerFactory
|
|
from .runtime_factory import RuntimeFactory
|
|
from .util_factory import UtilFactory
|
|
from paddle.fluid.wrapped_decorator import wrap_decorator
|
|
|
|
__all__ = ['Fleet']
|
|
|
|
|
|
def _inited_runtime_handler_(func):
|
|
def __impl__(*args, **kwargs):
|
|
cls = args[0]
|
|
|
|
if cls._runtime_handle is None:
|
|
raise ValueError("Fleet can not find suitable runtime handler")
|
|
|
|
return func(*args, **kwargs)
|
|
|
|
return __impl__
|
|
|
|
|
|
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
|
|
|
|
|
|
class Fleet(object):
|
|
"""
|
|
Unified API for distributed training of PaddlePaddle
|
|
Please reference the https://github.com/PaddlePaddle/Fleet for details
|
|
|
|
|
|
Returns:
|
|
Fleet: A Fleet instance
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.distributed.fleet as fleet
|
|
role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
|
|
fleet.init(role)
|
|
strategy = fleet.DistributedStrategy()
|
|
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
|
|
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
|
|
if fleet.is_first_worker():
|
|
print("this is first worker")
|
|
print("current node index: {}".format(fleet.worker_index()))
|
|
print("total number of worker num: {}".format(fleet.worker_num()))
|
|
if fleet.is_worker():
|
|
print("this is worker")
|
|
print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
|
|
print("server num: {}".format(fleet.server_num()))
|
|
print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
|
|
if fleet.is_server():
|
|
print("this is server")
|
|
fleet.stop_worker()
|
|
"""
|
|
|
|
def __init__(self):
|
|
self._runtime_handle = None
|
|
self._util = None
|
|
|
|
def init(self, role_maker):
|
|
self._role_maker = role_maker
|
|
self.strategy_compiler = StrategyCompiler()
|
|
|
|
def is_first_worker(self):
|
|
"""
|
|
Check whether the node is the first instance of worker.
|
|
|
|
Returns:
|
|
bool: True if this is the first node of worker,
|
|
False if not.
|
|
|
|
"""
|
|
return self._role_maker.is_first_worker()
|
|
|
|
def worker_index(self):
|
|
"""
|
|
Get current worker index.
|
|
|
|
Returns:
|
|
int: node id
|
|
"""
|
|
return self._role_maker.worker_index()
|
|
|
|
def worker_num(self):
|
|
"""
|
|
Get current total worker number.
|
|
|
|
Returns:
|
|
int: worker numbers
|
|
"""
|
|
return self._role_maker.worker_num()
|
|
|
|
def is_worker(self):
|
|
"""
|
|
Check whether the node is an instance of worker.
|
|
|
|
Returns:
|
|
bool: True if this is a node of worker,
|
|
False if not.
|
|
"""
|
|
return self._role_maker.is_worker()
|
|
|
|
def worker_endpoints(self, to_string=False):
|
|
"""
|
|
Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
|
|
|
|
Returns:
|
|
list/string: server endpoints
|
|
"""
|
|
'''
|
|
if to_string:
|
|
return ",".join(self._role_maker.get_trainer_endpoints())
|
|
else:
|
|
return self._role_maker.get_trainer_endpoints()
|
|
'''
|
|
return ["127.0.0.1:1001", "127.0.0.1:1002"]
|
|
|
|
def server_num(self):
|
|
"""
|
|
Get current total worker number.
|
|
|
|
Returns:
|
|
int: server number
|
|
"""
|
|
return len(self._role_maker.get_pserver_endpoints())
|
|
|
|
def server_index(self):
|
|
"""
|
|
Get current server index.
|
|
|
|
Returns:
|
|
int: node id
|
|
"""
|
|
return self._role_maker.server_index()
|
|
|
|
def server_endpoints(self, to_string=False):
|
|
"""
|
|
Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
|
|
|
|
Returns:
|
|
list/string: server endpoints
|
|
"""
|
|
'''
|
|
if to_string:
|
|
return ",".join(self._role_maker.get_pserver_endpoints())
|
|
else:
|
|
return self._role_maker.get_pserver_endpoints()
|
|
'''
|
|
return ["127.0.0.1:1001", "127.0.0.1:1002"]
|
|
|
|
def is_server(self):
|
|
"""
|
|
Check whether the node is an instance of server.
|
|
|
|
Returns:
|
|
bool: True if this is a node of server,
|
|
False if not.
|
|
"""
|
|
return self._role_maker.is_server()
|
|
|
|
@property
|
|
def util(self):
|
|
"""
|
|
Utility functions that can be used under certain runtime
|
|
return util
|
|
"""
|
|
return self._util
|
|
|
|
@util.setter
|
|
def util(self, util):
|
|
"""
|
|
Set Utility functions for userd-defined runtime
|
|
set util
|
|
"""
|
|
self._util = util
|
|
|
|
def barrier_worker(self):
|
|
"""
|
|
barrier between workers
|
|
"""
|
|
self._role_maker.barrier_worker()
|
|
|
|
@inited_runtime_handler
|
|
def init_worker(self):
|
|
"""
|
|
init worker
|
|
"""
|
|
self._runtime_handle._init_worker()
|
|
|
|
@inited_runtime_handler
|
|
def init_server(self, *args, **kwargs):
|
|
"""
|
|
init server
|
|
"""
|
|
self._runtime_handle._init_server(*args, **kwargs)
|
|
|
|
@inited_runtime_handler
|
|
def run_server(self):
|
|
"""
|
|
run server
|
|
"""
|
|
self._runtime_handle._run_server()
|
|
|
|
@inited_runtime_handler
|
|
def stop_worker(self):
|
|
"""
|
|
stop worker
|
|
"""
|
|
self._runtime_handle._stop_worker()
|
|
|
|
def save_inference_model(self,
|
|
executor,
|
|
dirname,
|
|
feeded_var_names,
|
|
target_vars,
|
|
main_program=None,
|
|
export_for_deployment=True):
|
|
self._runtime_handle._save_inference_model(
|
|
executor, dirname, feeded_var_names, target_vars, main_program,
|
|
export_for_deployment)
|
|
|
|
def save_persistables(self, executor, dirname, main_program=None):
|
|
self._runtime_handle._save_persistables(executor, dirname, main_program)
|
|
|
|
def distributed_optimizer(self, optimizer, strategy=None):
|
|
"""
|
|
distirbuted_optimizer
|
|
Returns:
|
|
Fleet instance with minimize interface like optimizers
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
import paddle.distributed.fleet as fleet
|
|
role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
|
|
fleet.init(role)
|
|
strategy = fleet.DistributedStrategy()
|
|
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
|
|
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
|
|
"""
|
|
self.user_defined_optimizer = optimizer
|
|
if strategy == None:
|
|
strategy = DistributedStrategy()
|
|
self.user_defined_strategy = strategy
|
|
self.valid_strategy = None
|
|
return self
|
|
|
|
def minimize(self,
|
|
loss,
|
|
startup_program=None,
|
|
parameter_list=None,
|
|
no_grad_set=None):
|
|
"""
|
|
Add distributed operations to minimize ``loss`` by updating ``parameter_list``.
|
|
|
|
Args:
|
|
loss (Variable): A ``Variable`` containing the value to minimize.
|
|
startup_program (Program, optional): :ref:`api_fluid_Program` for
|
|
initializing parameters in ``parameter_list``. The default value
|
|
is None, at this time :ref:`api_fluid_default_startup_program` will be used.
|
|
parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
|
|
to minimize ``loss``. The default value is None, at this time all parameters
|
|
will be updated.
|
|
no_grad_set (set, optional): Set of ``Variable`` or ``Variable.name`` that don't need
|
|
to be updated. The default value is None.
|
|
|
|
Returns:
|
|
tuple: tuple (optimize_ops, params_grads), A list of operators appended
|
|
by minimize and a list of (param, grad) variable pairs, param is
|
|
``Parameter``, grad is the gradient value corresponding to the parameter.
|
|
The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
|
|
indicate program pruning. If so, the program will be pruned by ``feed`` and
|
|
``fetch_list`` before run, see details in ``Executor``.
|
|
|
|
Examples:
|
|
import paddle
|
|
import paddle.distributed.fleet as fleet
|
|
|
|
fc_1 = paddle.layers.fc(input=input_x, size=hid_dim, act='tanh')
|
|
fc_2 = paddlen.layers.fc(input=fc_1, size=hid_dim, act='tanh')
|
|
prediction = paddle.layers.fc(input=[fc_2], size=label_dim, act='softmax')
|
|
cost = paddle.layers.cross_entropy(input=prediction, label=input_y)
|
|
avg_cost = paddle.layers.mean(x=cost)
|
|
|
|
role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
|
|
fleet.init(role)
|
|
strategy = fleet.DistributedStrategy()
|
|
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
|
|
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
|
|
optimizer.minimize(avg_cost)
|
|
|
|
# for more examples, please reference https://github.com/PaddlePaddle/Fleet
|
|
|
|
"""
|
|
context = {}
|
|
# cache original feed forward program
|
|
self.origin_main_program = loss.block.program
|
|
context["origin_main_program"] = self.origin_main_program
|
|
context["loss"] = loss
|
|
if startup_program == None:
|
|
self.origin_startup_program = \
|
|
paddle.static.default_startup_program().clone(for_test=False)
|
|
startup_program = paddle.static.default_startup_program()
|
|
else:
|
|
self.origin_startup_program = \
|
|
startup_program.clone(for_test=False)
|
|
|
|
context["origin_startup_program"] = startup_program
|
|
context["role_maker"] = self._role_maker
|
|
|
|
# compile time
|
|
distributed_optimizer_list = \
|
|
MetaOptimizerFactory()._get_valid_meta_optimizers(
|
|
self.user_defined_optimizer)
|
|
|
|
valid_optimizer_list = []
|
|
valid_graph_optimizer_list = []
|
|
can_not_apply_optimizer_list = []
|
|
# recall meta optimizers for ranking
|
|
for opt in distributed_optimizer_list:
|
|
opt._set_basic_info(loss, self._role_maker,
|
|
self.user_defined_optimizer,
|
|
self.user_defined_strategy)
|
|
if opt._can_apply() and not opt._is_graph_out():
|
|
valid_optimizer_list.append(opt)
|
|
elif opt._can_apply() and opt._is_graph_out():
|
|
valid_graph_optimizer_list.append(opt)
|
|
else:
|
|
can_not_apply_optimizer_list.append(opt)
|
|
# combine recalled meta optimizers to be a valid meta optimizer
|
|
meta_optimizer, graph_optimizer = \
|
|
self.strategy_compiler.generate_optimizer(
|
|
loss, self._role_maker, self.user_defined_optimizer,
|
|
self.user_defined_strategy, valid_optimizer_list,
|
|
valid_graph_optimizer_list)
|
|
|
|
valid_strategy = self.strategy_compiler._get_valid_strategy(
|
|
self.user_defined_strategy, can_not_apply_optimizer_list)
|
|
|
|
context["valid_strategy"] = valid_strategy
|
|
|
|
self.valid_strategy = valid_strategy
|
|
|
|
optimize_ops = []
|
|
params_grads = []
|
|
|
|
if meta_optimizer:
|
|
optimize_ops, params_grads = meta_optimizer.minimize(
|
|
loss,
|
|
startup_program=startup_program,
|
|
parameter_list=parameter_list,
|
|
no_grad_set=no_grad_set)
|
|
|
|
default_program = paddle.static.default_main_program()
|
|
|
|
if id(default_program) != id(loss.block.program):
|
|
paddle.fluid.framework.switch_main_program(loss.block.program)
|
|
|
|
else:
|
|
optimize_ops, params_grads = self.user_defined_optimizer.minimize(
|
|
loss,
|
|
startup_program=startup_program,
|
|
parameter_list=parameter_list,
|
|
no_grad_set=no_grad_set)
|
|
|
|
context["program_optimize_ops"] = optimize_ops
|
|
context["program_params_grads"] = params_grads
|
|
|
|
if graph_optimizer:
|
|
optimize_ops, params_grads = graph_optimizer.minimize(
|
|
loss,
|
|
startup_program=startup_program,
|
|
parameter_list=parameter_list,
|
|
no_grad_set=no_grad_set)
|
|
# since we do not encourage users to use graph operations
|
|
# if a graph optimizer takes effect, mostly
|
|
# optimizers_ops and params_grads are None
|
|
# i.e. users can not modify current computation graph anymore
|
|
context["graph_optimize_ops"] = optimize_ops
|
|
context["graph_optimize_grads"] = params_grads
|
|
|
|
if self._runtime_handle is None:
|
|
self._runtime_handle = RuntimeFactory()._create_runtime(context)
|
|
|
|
if self._util is None:
|
|
self._util = UtilFactory()._create_util(context)
|
|
|
|
return optimize_ops, params_grads
|