You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
556 lines
22 KiB
556 lines
22 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import warnings
|
|
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import core
|
|
from paddle.fluid.framework import Program
|
|
from paddle.fluid.compiler import CompiledProgram
|
|
from paddle.fluid.executor import Executor
|
|
from paddle.fluid.parallel_executor import ParallelExecutor
|
|
|
|
from .runtime_base import RuntimeBase
|
|
|
|
|
|
class ParameterServerRuntime(RuntimeBase):
|
|
def __init__(self):
|
|
super(ParameterServerRuntime, self).__init__()
|
|
self._communicator = None
|
|
|
|
def _set_basic_info(self, context):
|
|
self.context = context
|
|
self.role_maker = context["role_maker"]
|
|
self.origin_main_program = context["origin_main_program"]
|
|
self.origin_startup_program = context["origin_startup_program"]
|
|
self.async_strategy = self._get_distributed_strategy()
|
|
self.compiled_strategy = self.build_compiled_startegy()
|
|
|
|
def _get_distributed_strategy(self):
|
|
strategy = None
|
|
|
|
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
|
|
|
|
dist_strategy = self.context["valid_strategy"]
|
|
k_steps = dist_strategy.a_sync_configs["k_steps"]
|
|
|
|
if not dist_strategy.a_sync and k_steps == 0:
|
|
strategy = StrategyFactory.create_sync_strategy()
|
|
|
|
if dist_strategy.a_sync and k_steps == 0:
|
|
strategy = StrategyFactory.create_async_strategy()
|
|
|
|
if dist_strategy.a_sync and k_steps > 0:
|
|
strategy = StrategyFactory.create_geo_strategy(k_steps)
|
|
|
|
if not strategy:
|
|
raise ValueError("k_steps must be invalid value, please check")
|
|
|
|
return strategy
|
|
|
|
def build_compiled_startegy(self):
|
|
from paddle.fluid.incubate.fleet.parameter_server.ir.public import CompileTimeStrategy
|
|
|
|
compiled_config = CompileTimeStrategy(
|
|
self.origin_main_program, self.origin_main_program,
|
|
self.async_strategy, self.role_maker)
|
|
return compiled_config
|
|
|
|
def _load_sparse_params(self, dirname, varnames):
|
|
from paddle.fluid.communicator import LargeScaleKV
|
|
from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts
|
|
|
|
scale_kv = LargeScaleKV()
|
|
for varname in varnames:
|
|
origin_varname, _, _ = _get_varname_parts(varname)
|
|
sparse_dir = os.path.join(dirname, origin_varname, varname)
|
|
scale_kv.load(varname, sparse_dir)
|
|
|
|
@staticmethod
|
|
def __exclude_vars(exclude_var_names=[]):
|
|
def is_valid(var):
|
|
if var.name in exclude_var_names:
|
|
return False
|
|
|
|
from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts
|
|
|
|
origin_varname, _, _ = _get_varname_parts(var.name)
|
|
if origin_varname.endswith("@GRAD"):
|
|
return False
|
|
|
|
if origin_varname == "learning_rate_0":
|
|
return False
|
|
|
|
if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
|
|
var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
|
|
var.desc.type() == core.VarDesc.VarType.READER:
|
|
return False
|
|
return var.persistable
|
|
|
|
return is_valid
|
|
|
|
def _init_worker(self):
|
|
def sync_strategy_envs():
|
|
kwargs = {}
|
|
kwargs["pserver_endpoints"] = self.role_maker.get_pserver_endpoints(
|
|
)
|
|
kwargs["trainer_id"] = self.role_maker.worker_index()
|
|
return kwargs
|
|
|
|
def geo_strategy_envs():
|
|
from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames
|
|
|
|
def get_sparse_attrs():
|
|
opt_init_map = {}
|
|
opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
|
|
opt_init_map["fill_constant"] = ["value"]
|
|
opt_init_map["uniform_random"] = ["seed", "min", "max"]
|
|
opt_init_map[
|
|
"truncated_gaussian_random"] = ["seed", "mean", "std"]
|
|
|
|
dist_varnames = get_sparse_tablenames(self.origin_main_program,
|
|
True)
|
|
sparse_varnames = get_sparse_tablenames(
|
|
self.origin_main_program, False)
|
|
|
|
if len(dist_varnames) != 0:
|
|
raise ValueError(
|
|
"GeoStrategy can not support large scale embeding now, please use fluid.layers.embedding"
|
|
)
|
|
|
|
init_attrs = []
|
|
for value_name in sparse_varnames:
|
|
value_var = self.origin_main_program.global_block().vars[
|
|
value_name]
|
|
value_attr = [
|
|
value_name,
|
|
",".join([str(dim) for dim in value_var.shape])
|
|
]
|
|
for op in self.origin_startup_program.global_block().ops:
|
|
if op.type in opt_init_map.keys(
|
|
) and value_name == op.output("Out")[0]:
|
|
init_attr = [op.type]
|
|
for attr in opt_init_map[op.type]:
|
|
init_attr.append(str(op.attr(attr)))
|
|
value_attr.append("&".join(init_attr))
|
|
init_attrs.append(":".join(value_attr))
|
|
break
|
|
return "#".join(init_attrs)
|
|
|
|
kwargs = {}
|
|
kwargs["trainers"] = self.role_maker.worker_num()
|
|
kwargs["sparse_attrs"] = get_sparse_attrs()
|
|
return kwargs
|
|
|
|
from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_lr_ops
|
|
|
|
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \
|
|
SyncStrategy, GeoStrategy
|
|
|
|
trainer_config = self.async_strategy.get_trainer_runtime_config()
|
|
lrs = _get_lr_ops(self.origin_main_program)
|
|
|
|
if len(lrs) > 0:
|
|
kwargs = {"need_global_step": "1"}
|
|
else:
|
|
kwargs = {"need_global_step": "0"}
|
|
|
|
if isinstance(self.async_strategy, GeoStrategy):
|
|
geo_kwargs = geo_strategy_envs()
|
|
kwargs.update(geo_kwargs)
|
|
if isinstance(self.async_strategy, SyncStrategy):
|
|
sync_kwargs = sync_strategy_envs()
|
|
kwargs.update(sync_kwargs)
|
|
|
|
kwargs = kwargs if kwargs else None
|
|
|
|
send_ctx = self.compiled_strategy.get_communicator_send_context()
|
|
|
|
if self.compiled_strategy.is_geo_mode():
|
|
recv_ctx = self.compiled_strategy.get_communicator_recv_context(
|
|
recv_type=4)
|
|
else:
|
|
recv_ctx = self.compiled_strategy.get_communicator_recv_context(
|
|
recv_type=1)
|
|
|
|
from paddle.fluid.communicator import Communicator
|
|
self._communicator = Communicator(
|
|
trainer_config.mode, kwargs,
|
|
trainer_config.get_communicator_flags())
|
|
self._communicator.init_with_ctx(send_ctx, recv_ctx)
|
|
|
|
if not self._communicator.is_running():
|
|
self._communicator.start()
|
|
else:
|
|
warnings.warn("communicator has been initialized, skip")
|
|
|
|
def _init_server(self, *args, **kwargs):
|
|
if len(args) > 1:
|
|
raise ValueError("init server can only accept 1 args: `dirname`")
|
|
elif len(args) == 1:
|
|
model_dirname = args[0]
|
|
else:
|
|
model_dirname = None
|
|
|
|
executor = fluid.Executor(fluid.CPUPlace())
|
|
executor.run(fluid.default_startup_program())
|
|
|
|
if not model_dirname:
|
|
return
|
|
|
|
if not os.path.isdir(model_dirname):
|
|
raise ValueError("There is no directory named '%s'", model_dirname)
|
|
|
|
sparse_varnames = self.compiled_strategy.get_sparse_varname_on_ps(True)
|
|
|
|
distribtued_varnames = self.compiled_strategy.get_sparse_varname_on_ps(
|
|
False)
|
|
|
|
remaining_vars = list(
|
|
filter(
|
|
ParameterServerRuntime.__exclude_vars(sparse_varnames +
|
|
distribtued_varnames),
|
|
fluid.default_main_program().list_vars()))
|
|
|
|
fluid.io.load_vars(
|
|
executor,
|
|
main_program=fluid.default_main_program(),
|
|
dirname=model_dirname,
|
|
vars=remaining_vars)
|
|
|
|
self._load_sparse_params(
|
|
dirname=model_dirname, varnames=sparse_varnames)
|
|
|
|
# todo(tangwei12) load distributed vars
|
|
# self._load_sparse_params(dirname=model_dir, varnames=distribtued_varnames)
|
|
|
|
def _run_server(self):
|
|
executor = fluid.Executor(fluid.CPUPlace())
|
|
executor.run(fluid.default_main_program())
|
|
|
|
def _stop_worker(self):
|
|
self._communicator.stop()
|
|
executor = fluid.Executor(fluid.CPUPlace())
|
|
executor.close()
|
|
|
|
def _get_optimizer_status(self, op, param_name):
|
|
supported_opts = [
|
|
"sgd", "adam", "adagrad", "adamax", "momentum", "lars_momentum",
|
|
"rmsprop", "decayed_adagrad", "ftrl"
|
|
]
|
|
|
|
reshaped_val_map = {}
|
|
reshaped_val_map["sgd"] = []
|
|
reshaped_val_map["adam"] = ["moment1_0", "moment2_0"]
|
|
reshaped_val_map["adagrad"] = ["moment_0"]
|
|
reshaped_val_map["adamax"] = ["moment_0", "inf_norm_0"]
|
|
reshaped_val_map["momentum"] = ["velocity_0"]
|
|
reshaped_val_map["lars_momentum"] = ["velocity_0"]
|
|
reshaped_val_map[
|
|
"rmsprop"] = ["momentum_0", "mean_square_0", "mean_grad_0"]
|
|
reshaped_val_map["decayed_adagrad"] = ["moment_0"]
|
|
reshaped_val_map["ftrl"] = ["squared_0", "linear_0"]
|
|
|
|
orishaped_val_map = {}
|
|
orishaped_val_map["adam"] = ["beta1_pow_acc_0", "beta2_pow_acc_0"]
|
|
orishaped_val_map["adamax"] = ["beta1_pow_acc_0"]
|
|
|
|
if op not in supported_opts:
|
|
raise ValueError(
|
|
"fleet can not support optimizer: {}, only this can be supported: {}".
|
|
format(op, supported_opts))
|
|
|
|
reshaped_names = [
|
|
param_name + "_" + val for val in reshaped_val_map[op]
|
|
]
|
|
|
|
if op not in orishaped_val_map:
|
|
origin_names = []
|
|
else:
|
|
origin_names = [
|
|
param_name + "_" + val for val in orishaped_val_map[op]
|
|
]
|
|
return reshaped_names, origin_names
|
|
|
|
def _get_optimizer_op(self, param_name):
|
|
from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops
|
|
|
|
opts = _get_optimize_ops(self.origin_main_program)
|
|
for op in opts:
|
|
if "Param" in op.input_names and \
|
|
"LearningRate" in op.input_names and op.input("Param")[0] == param_name:
|
|
return op
|
|
|
|
def _save_dense_params(self, executor, dirname, context, main_program):
|
|
self._communicator.recv()
|
|
|
|
prog = Program()
|
|
block = prog.global_block()
|
|
local_vars = []
|
|
|
|
for name, var_ctx in context.items():
|
|
if len(var_ctx.origin_varnames()) != 1:
|
|
raise ValueError("Dense can not support split now.")
|
|
|
|
varname = var_ctx.origin_varnames()[0]
|
|
local_vars.append(varname)
|
|
|
|
optimizer = self._get_optimizer_op(varname)
|
|
reshaped_varnames, origin_varnames = self._get_optimizer_status(
|
|
optimizer.type, varname)
|
|
|
|
for var_name in [varname] + reshaped_varnames + origin_varnames:
|
|
var = self.origin_main_program.global_block().vars[var_name]
|
|
block.append_op(
|
|
type='recv_save',
|
|
attrs={
|
|
"trainer_id": self.role_maker.worker_index(),
|
|
"shape": var.shape,
|
|
"slice_shapes":
|
|
[",".join([str(i) for i in var.shape])],
|
|
"slice_varnames": [var.name],
|
|
"remote_varnames": [var.name],
|
|
"is_sparse": False,
|
|
"endpoints": var_ctx.split_endpoints(),
|
|
"file_path": os.path.join(dirname, var.name)
|
|
})
|
|
|
|
executor.run(prog)
|
|
return local_vars
|
|
|
|
def _save_sparse_params(self, executor, dirname, context, main_program):
|
|
prog = Program()
|
|
block = prog.global_block()
|
|
local_vars = []
|
|
|
|
for name, var_ctx in context.items():
|
|
if len(var_ctx.origin_varnames()) != 1:
|
|
raise ValueError("Dense can not support split now.")
|
|
|
|
varname = var_ctx.origin_varnames()[0]
|
|
local_vars.append(varname)
|
|
|
|
optimizer = self._get_optimizer_op(varname)
|
|
reshaped_varnames, origin_varnames = self._get_optimizer_status(
|
|
optimizer.type, varname)
|
|
|
|
var = self.origin_main_program.global_block().vars[varname]
|
|
slice_shapes = []
|
|
dims1 = ",".join([str(i) for i in var.shape[1:]])
|
|
|
|
for section in var_ctx.sections():
|
|
slice_shapes.append(str(section) + dims1)
|
|
|
|
block.append_op(
|
|
type='recv_save',
|
|
attrs={
|
|
"trainer_id": self.role_maker.worker_index(),
|
|
"shape": var.shape,
|
|
"slice_shapes": slice_shapes,
|
|
"slice_varnames": var_ctx.split_varnames(),
|
|
"remote_varnames": var_ctx.split_varnames(),
|
|
"is_sparse": True,
|
|
"endpoints": var_ctx.split_endpoints(),
|
|
"pserver_num": len(self.role_maker.get_pserver_endpoints()),
|
|
"file_path": os.path.join(dirname, var.name)
|
|
})
|
|
|
|
for reshaped_varname in reshaped_varnames:
|
|
var = self.origin_main_program.global_block().vars[
|
|
reshaped_varname]
|
|
|
|
slice_varnames = []
|
|
remote_varnames = []
|
|
for i in range(len(var_ctx.split_varnames())):
|
|
slice_varnames.append("{}.block{}".format(reshaped_varname,
|
|
i))
|
|
remote_varnames.append(reshaped_varname)
|
|
|
|
block.append_op(
|
|
type='recv_save',
|
|
attrs={
|
|
"trainer_id": self.role_maker.worker_index(),
|
|
"shape": var.shape,
|
|
"slice_shapes": slice_shapes,
|
|
"slice_varnames": slice_varnames,
|
|
"remote_varnames": remote_varnames,
|
|
"is_sparse": True,
|
|
"endpoints": var_ctx.split_endpoints(),
|
|
"pserver_num":
|
|
len(self.role_maker.get_pserver_endpoints()),
|
|
"file_path": os.path.join(dirname, var.name)
|
|
})
|
|
|
|
for origin_varname in origin_varnames:
|
|
var = self.origin_main_program.global_block().vars[
|
|
origin_varname]
|
|
|
|
block.append_op(
|
|
type='recv_save',
|
|
attrs={
|
|
"trainer_id": self.role_maker.worker_index(),
|
|
"shape": var.shape,
|
|
"slice_shapes":
|
|
[",".join([str(i) for i in var.shape])],
|
|
"slice_varnames": [origin_varname],
|
|
"remote_varnames": [origin_varname],
|
|
"is_sparse": False,
|
|
"endpoints": var_ctx.split_endpoints()[:1],
|
|
"file_path": os.path.join(dirname, var.name)
|
|
})
|
|
executor.run(prog)
|
|
return context.keys()
|
|
|
|
def _save_distributed_params(self, executor, dirname, context,
|
|
main_program):
|
|
prog = Program()
|
|
block = prog.global_block()
|
|
|
|
for name, var_ctx in context.items():
|
|
block.append_op(
|
|
type='checkpoint_notify',
|
|
attrs={
|
|
"varname": name,
|
|
"is_slice": True,
|
|
"slice_varnames": var_ctx.split_varnames(),
|
|
"remote_varnames": var_ctx.split_varnames(),
|
|
"endpoints": var_ctx.split_endpoints(),
|
|
"dirname": dirname
|
|
})
|
|
|
|
executor.run(prog)
|
|
return context.keys()
|
|
|
|
def _save_distributed_persistables(self, executor, dirname, main_program):
|
|
dense_ctx = self.compiled_strategy.get_communicator_recv_context(
|
|
recv_type=1)
|
|
|
|
sparse_ctx = self.compiled_strategy.get_communicator_recv_context(
|
|
recv_type=2)
|
|
|
|
distributed_ctx = self.compiled_strategy.get_communicator_recv_context(
|
|
recv_type=3)
|
|
|
|
recv_dense_varnames = self._save_dense_params(executor, dirname,
|
|
dense_ctx, main_program)
|
|
|
|
recv_sparse_varnames = self._save_sparse_params(
|
|
executor, dirname, sparse_ctx, main_program)
|
|
|
|
recv_distributed_varnames = self._save_distributed_params(
|
|
executor, dirname, distributed_ctx, main_program)
|
|
|
|
saved_varnames = recv_dense_varnames + list(
|
|
recv_sparse_varnames) + list(recv_distributed_varnames)
|
|
|
|
remaining_vars = list(
|
|
filter(
|
|
ParameterServerRuntime.__exclude_vars(saved_varnames),
|
|
main_program.list_vars()))
|
|
|
|
fluid.io.save_vars(
|
|
executor,
|
|
main_program=main_program,
|
|
dirname=dirname,
|
|
vars=remaining_vars)
|
|
|
|
def _ps_inference_save_persistables(self,
|
|
executor,
|
|
dirname,
|
|
main_program=None,
|
|
**kwargs):
|
|
"""
|
|
This function filters out all variables with `persistable==True` from the
|
|
give `main_program` and then saves these variables to the folder `dirname`
|
|
or file `filename`.
|
|
|
|
The `dirname` is used to specify the folder where persistable variables
|
|
are going to be saved. If you would like to save variables in separate
|
|
files, set `filename` None; if you would like to save all variables in a
|
|
single file, use `filename` to specify the file name.
|
|
"""
|
|
|
|
if isinstance(executor, ParallelExecutor):
|
|
raise TypeError(
|
|
"in fleet.save_persistables() function, executor must be as Executor type, ParallelExecutor is not allowed"
|
|
)
|
|
|
|
if not isinstance(executor, Executor):
|
|
raise TypeError(
|
|
"in fleet.save_persistables() function, executor must be as Executor type"
|
|
)
|
|
|
|
if main_program is None:
|
|
main_program = fluid.default_main_program()
|
|
|
|
if isinstance(main_program, CompiledProgram):
|
|
raise TypeError(
|
|
"in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed"
|
|
)
|
|
|
|
self._save_distributed_persistables(executor, dirname, main_program)
|
|
|
|
def _ps_inference_save_inference_model(self,
|
|
executor,
|
|
dirname,
|
|
feeded_var_names,
|
|
target_vars,
|
|
main_program=None,
|
|
export_for_deployment=True):
|
|
"""
|
|
Prune the given `main_program` to build a new program especially for inference,
|
|
and then save it and all related parameters to given `dirname` by the `executor`.
|
|
"""
|
|
|
|
if isinstance(executor, ParallelExecutor):
|
|
raise TypeError(
|
|
"in fleet.save_inference_model() function, executor must be as Executor type, ParallelExecutor is not allowed"
|
|
)
|
|
|
|
if not isinstance(executor, Executor):
|
|
raise TypeError(
|
|
"in fleet.save_inference_model() function, executor must be as Executor type"
|
|
)
|
|
|
|
if main_program is not None:
|
|
if isinstance(main_program, CompiledProgram):
|
|
raise TypeError(
|
|
"in fleet.save_inference_model() function, main_program must be as Program type, CompiledProgram is not allowed"
|
|
)
|
|
fluid.io.save_inference_model(dirname, feeded_var_names,
|
|
target_vars, executor, main_program,
|
|
None, None, export_for_deployment)
|
|
else:
|
|
fluid.io.save_inference_model(dirname, feeded_var_names,
|
|
target_vars, executor,
|
|
self.origin_main_program, None, None,
|
|
export_for_deployment, True)
|
|
|
|
model_basename = "__model__"
|
|
model_filename = os.path.join(dirname, model_basename)
|
|
|
|
with open(model_filename, "rb") as f:
|
|
program_desc_str = f.read()
|
|
|
|
program = Program.parse_from_string(program_desc_str)
|
|
program._copy_dist_param_info_from(fluid.default_main_program())
|
|
self._ps_inference_save_persistables(executor, dirname, program)
|
|
|
|
def _save_inference_model(self, *args, **kwargs):
|
|
self._ps_inference_save_inference_model(*args, **kwargs)
|
|
|
|
def _save_persistables(self, *args, **kwargs):
|
|
self._ps_inference_save_persistables(*args, **kwargs)
|