You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
193 lines
6.2 KiB
193 lines
6.2 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False):
|
|
|
|
N, C, D, H, W = x.shape
|
|
if global_pool:
|
|
ksize = [D, H, W]
|
|
paddings = [0, 0, 0]
|
|
|
|
D_out = (D - ksize[0] + 2 * paddings[0]) / strides[0] + 1
|
|
H_out = (H - ksize[1] + 2 * paddings[1]) / strides[1] + 1
|
|
W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1
|
|
out = np.zeros((N, C, D_out, H_out, W_out))
|
|
mask = np.zeros((N, C, D_out, H_out, W_out))
|
|
for k in xrange(D_out):
|
|
d_start = np.max((k * strides[0] - paddings[0], 0))
|
|
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
|
|
for i in xrange(H_out):
|
|
h_start = np.max((i * strides[0] - paddings[0], 0))
|
|
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
|
|
for j in xrange(W_out):
|
|
w_start = np.max((j * strides[1] - paddings[1], 0))
|
|
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
|
|
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
|
|
|
|
out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
|
|
|
|
for n in xrange(N):
|
|
for c in xrange(C):
|
|
arr = x_masked[n, c, :, :, :]
|
|
index = np.where(arr == np.max(arr))
|
|
sub_deep = index[0][0]
|
|
sub_row = index[1][0]
|
|
sub_col = index[2][0]
|
|
index = ((d_start + sub_deep) * H +
|
|
(h_start + sub_row)) * W + w_start + sub_col
|
|
mask[n, c, k, i, j] = index
|
|
|
|
return out, mask
|
|
|
|
|
|
def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=False):
|
|
|
|
N, C, H, W = x.shape
|
|
if global_pool:
|
|
ksize = [H, W]
|
|
paddings = [0, 0]
|
|
|
|
H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1
|
|
W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1
|
|
out = np.zeros((N, C, H_out, W_out))
|
|
mask = np.zeros((N, C, H_out, W_out))
|
|
for i in xrange(H_out):
|
|
for j in xrange(W_out):
|
|
r_start = np.max((i * strides[0] - paddings[0], 0))
|
|
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
|
|
c_start = np.max((j * strides[1] - paddings[1], 0))
|
|
c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
|
|
x_masked = x[:, :, r_start:r_end, c_start:c_end]
|
|
|
|
out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
|
|
|
|
for n in xrange(N):
|
|
for c in xrange(C):
|
|
arr = x_masked[n, c, :, :]
|
|
index = np.where(arr == np.max(arr))
|
|
sub_row = index[0][0]
|
|
sub_col = index[1][0]
|
|
index = (r_start + sub_row) * W + c_start + sub_col
|
|
mask[n, c, i, j] = index
|
|
|
|
return out, mask
|
|
|
|
|
|
class TestMaxPoolWithIndex_Op(OpTest):
|
|
def setUp(self):
|
|
self.init_test_case()
|
|
self.init_global()
|
|
|
|
input = np.random.random(self.shape).astype("float32")
|
|
output, mask = self.pool_forward_naive(input, self.ksize, self.strides,
|
|
self.paddings, self.global_pool)
|
|
output = output.astype("float32")
|
|
mask = mask.astype("int32")
|
|
|
|
self.attrs = {
|
|
'strides': self.strides,
|
|
'paddings': self.paddings,
|
|
'ksize': self.ksize,
|
|
'global_pooling': self.global_pool,
|
|
}
|
|
|
|
self.inputs = {'X': input}
|
|
self.outputs = {'Out': output, "Mask": mask}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
# def test_check_grad(self):
|
|
# self.check_grad(set(['X']), ['Out'], max_relative_error=0.07)
|
|
|
|
def init_test_case(self):
|
|
self.op_type = "max_pool3d_with_index"
|
|
self.pool_forward_naive = max_pool3D_forward_naive
|
|
self.shape = [2, 3, 5, 5, 5]
|
|
self.ksize = [3, 3, 3]
|
|
self.strides = [1, 1, 1]
|
|
self.paddings = [1, 1, 1]
|
|
|
|
def init_global(self):
|
|
self.global_pool = False
|
|
|
|
|
|
class TestCase1(TestMaxPoolWithIndex_Op):
|
|
def init_global(self):
|
|
self.global_pool = True
|
|
|
|
|
|
class TestCase2(TestMaxPoolWithIndex_Op):
|
|
def init_test_case(self):
|
|
self.op_type = "max_pool3d_with_index"
|
|
self.pool_forward_naive = max_pool3D_forward_naive
|
|
self.shape = [2, 3, 7, 7, 7]
|
|
self.ksize = [3, 3, 3]
|
|
self.strides = [2, 2, 2]
|
|
self.paddings = [0, 0, 0]
|
|
|
|
def init_global(self):
|
|
self.global_pool = True
|
|
|
|
|
|
class TestCase3(TestCase2):
|
|
def init_global(self):
|
|
self.global_pool = False
|
|
|
|
|
|
#----------------max_pool2d_with_index----------------
|
|
class TestCase4(TestMaxPoolWithIndex_Op):
|
|
def init_test_case(self):
|
|
self.op_type = "max_pool2d_with_index"
|
|
self.pool_forward_naive = max_pool2D_forward_naive
|
|
self.shape = [2, 3, 7, 7]
|
|
self.ksize = [3, 3]
|
|
self.strides = [1, 1]
|
|
self.paddings = [1, 1]
|
|
|
|
def init_global(self):
|
|
self.global_pool = True
|
|
|
|
|
|
class TestCase5(TestCase4):
|
|
def init_global(self):
|
|
self.global_pool = False
|
|
|
|
|
|
class TestCase6(TestMaxPoolWithIndex_Op):
|
|
def init_test_case(self):
|
|
self.op_type = "max_pool2d_with_index"
|
|
self.pool_forward_naive = max_pool2D_forward_naive
|
|
self.shape = [2, 3, 7, 7]
|
|
self.ksize = [3, 3]
|
|
self.strides = [2, 2]
|
|
self.paddings = [0, 0]
|
|
|
|
def init_global(self):
|
|
self.global_pool = True
|
|
|
|
|
|
class TestCase7(TestCase6):
|
|
def init_global(self):
|
|
self.global_pool = False
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|