You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
159 lines
5.5 KiB
159 lines
5.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/cross_entropy_op.h"
|
|
#include "paddle/platform/assert.h"
|
|
#include "paddle/platform/hostdevice.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
__global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
|
|
const int N, const int D) {
|
|
// TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
|
|
// CUDA_1D_KERNEL_LOOP(i, N) {
|
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
|
|
i += blockDim.x * gridDim.x) {
|
|
PADDLE_ASSERT(label[i] >= 0 && label[i] < D);
|
|
Y[i] = -tolerable_value(log(X[i * D + label[i]]));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
|
|
const int N, const int D) {
|
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
|
|
i += blockDim.x * gridDim.x) {
|
|
T sum = static_cast<T>(0);
|
|
for (int j = 0; j < D; j++) {
|
|
sum += label[i * D + j] * tolerable_value(log(X[i * D + j]));
|
|
}
|
|
Y[i] = -sum;
|
|
}
|
|
}
|
|
|
|
// TODO(qingqing): make zero setting an common function.
|
|
template <typename T>
|
|
__global__ void zero(T* X, const int N) {
|
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
|
|
i += blockDim.x * gridDim.x) {
|
|
X[i] = 0.0;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
|
|
const int* label, const int N,
|
|
const int D) {
|
|
// TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
|
|
// CUDA_1D_KERNEL_LOOP(i, N) {
|
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
|
|
i += blockDim.x * gridDim.x) {
|
|
int idx = i * D + label[i];
|
|
dX[idx] = -dY[i] / X[idx];
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void SoftCrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
|
|
const T* label, const int N,
|
|
const int D) {
|
|
// TOOD(qingqing): optimize for this kernel
|
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
|
|
i += blockDim.x * gridDim.x) {
|
|
for (int j = 0; j < D; ++j) {
|
|
int idx = i * D + j;
|
|
dX[idx] = -label[idx] * dY[i] / X[idx];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class CrossEntropyOpCUDAKernel : public framework::OpKernel {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"It must use GPUPlace.");
|
|
|
|
auto x = ctx.Input<Tensor>("X");
|
|
auto y = ctx.Output<Tensor>("Y");
|
|
auto label = ctx.Input<Tensor>("Label");
|
|
|
|
auto* x_data = x->data<T>();
|
|
y->mutable_data<T>(ctx.GetPlace());
|
|
auto* y_data = y->data<T>();
|
|
|
|
int n = x->dims()[0];
|
|
int d = x->dims()[1];
|
|
int block = 512;
|
|
int grid = (n + block - 1) / block;
|
|
// TODO(qingqing) launch kernel on specified stream
|
|
// base on ExecutionContext.
|
|
if (ctx.Attr<int>("soft_label") == 1) {
|
|
auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
|
|
SoftCrossEntropyKernel<T><<<grid, block>>>(y_data, x_data, label_data, n,
|
|
d);
|
|
} else {
|
|
auto* label_data = ctx.Input<Tensor>("Label")->data<int>();
|
|
CrossEntropyKernel<T><<<grid, block>>>(y_data, x_data, label_data, n, d);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"It must use GPUPlace.");
|
|
|
|
auto x = ctx.Input<Tensor>("X");
|
|
auto dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
|
|
auto label = ctx.Input<Tensor>("Label");
|
|
|
|
auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
|
|
auto* dy_data = dy->data<T>();
|
|
auto* x_data = x->data<T>();
|
|
|
|
int n = x->dims()[0];
|
|
int d = x->dims()[1];
|
|
int block = 512;
|
|
int grid = (n * d + block - 1) / block;
|
|
zero<T><<<grid, block>>>(dx_data, n * d);
|
|
grid = (n + block - 1) / block;
|
|
// TODO(qingqing): launch kernel on specified stream
|
|
// base on ExecutionContext.
|
|
if (ctx.Attr<int>("soft_label") == 1) {
|
|
auto* label_data = label->data<T>();
|
|
SoftCrossEntropyGradientKernel<T><<<grid, block>>>(
|
|
dx_data, dy_data, x_data, label_data, n, d);
|
|
} else {
|
|
auto* label_data = label->data<int>();
|
|
CrossEntropyGradientKernel<T><<<grid, block>>>(dx_data, dy_data, x_data,
|
|
label_data, n, d);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_GPU_KERNEL(cross_entropy, ops::CrossEntropyOpCUDAKernel<float>);
|
|
REGISTER_OP_GPU_KERNEL(cross_entropy_grad,
|
|
ops::CrossEntropyGradientOpCUDAKernel<float>);
|