You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
3.6 KiB
96 lines
3.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/sequence_avg_pool_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SequenceAvgPoolOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(const framework::InferShapeContext& ctx) const override {
|
|
PADDLE_ENFORCE_NOT_NULL(
|
|
ctx.InputVar("X"), "Input(X) of SequenceAvgPoolOp should not be null.");
|
|
PADDLE_ENFORCE_NOT_NULL(
|
|
ctx.OutputVar("Out"),
|
|
"Output(Out) of SequenceAvgPoolOp should not be null.");
|
|
|
|
auto* x = ctx.Input<framework::LoDTensor>("X");
|
|
auto dims = x->dims();
|
|
auto lod = x->lod();
|
|
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
|
|
PADDLE_ENFORCE_GE(
|
|
dims[0],
|
|
/*batch size = */ static_cast<int64_t>(lod[0].size() - 1),
|
|
"The first dimension of Input(X) must be large than batch size.");
|
|
dims[0] = lod[0].size() - 1;
|
|
ctx.Output<framework::LoDTensor>("Out")->Resize({dims});
|
|
}
|
|
};
|
|
|
|
class SequenceAvgPoolOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
SequenceAvgPoolOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "Input of SequenceAvgPoolOp.");
|
|
AddOutput("Out", "The output of SequenceAvgPoolOp.");
|
|
AddComment(R"DOC(
|
|
SequenceAvgPoolOp averages features of all time-steps of each instance.
|
|
More detailed comments will be added later.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SequenceAvgPoolGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(const framework::InferShapeContext& ctx) const override {
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
|
"Gradient of Out should not be null.");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
|
|
"The input X should not be null.");
|
|
auto og_dims =
|
|
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->dims();
|
|
auto x_dims = ctx.Input<framework::LoDTensor>("X")->dims();
|
|
PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
|
|
"The rank of output grad must equal to Input(X).");
|
|
for (int64_t i = 1; i < og_dims.size(); ++i) {
|
|
PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
|
|
}
|
|
auto* x_grad =
|
|
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
|
x_grad->Resize(x_dims);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(sequence_avg_pool, ops::SequenceAvgPoolOp,
|
|
ops::SequenceAvgPoolOpMaker, sequence_avg_pool_grad,
|
|
ops::SequenceAvgPoolGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_avg_pool,
|
|
ops::SequenceAvgPoolKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_avg_pool_grad,
|
|
ops::SequenceAvgPoolGradKernel<paddle::platform::CPUPlace, float>);
|