You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
6.8 KiB
197 lines
6.8 KiB
"""
|
|
A very basic example for how to use current Raw SWIG API to train mnist network.
|
|
|
|
Current implementation uses Raw SWIG, which means the API call is directly \
|
|
passed to C++ side of Paddle.
|
|
|
|
The user api could be simpler and carefully designed.
|
|
"""
|
|
import random
|
|
|
|
import numpy as np
|
|
import paddle.v2 as paddle_v2
|
|
import py_paddle.swig_paddle as api
|
|
from paddle.trainer_config_helpers import *
|
|
from py_paddle import DataProviderConverter
|
|
|
|
from mnist_util import read_from_mnist
|
|
|
|
|
|
def init_parameter(network):
|
|
assert isinstance(network, api.GradientMachine)
|
|
for each_param in network.getParameters():
|
|
assert isinstance(each_param, api.Parameter)
|
|
array_size = len(each_param)
|
|
array = np.random.uniform(-1.0, 1.0, array_size).astype('float32')
|
|
each_param.getBuf(api.PARAMETER_VALUE).copyFromNumpyArray(array)
|
|
|
|
|
|
def generator_to_batch(generator, batch_size):
|
|
ret_val = list()
|
|
for each_item in generator:
|
|
ret_val.append(each_item)
|
|
if len(ret_val) == batch_size:
|
|
yield ret_val
|
|
ret_val = list()
|
|
if len(ret_val) != 0:
|
|
yield ret_val
|
|
|
|
|
|
class BatchPool(object):
|
|
def __init__(self, generator, batch_size):
|
|
self.data = list(generator)
|
|
self.batch_size = batch_size
|
|
|
|
def __call__(self):
|
|
random.shuffle(self.data)
|
|
for offset in xrange(0, len(self.data), self.batch_size):
|
|
limit = min(offset + self.batch_size, len(self.data))
|
|
yield self.data[offset:limit]
|
|
|
|
|
|
def input_order_converter(generator):
|
|
for each_item in generator:
|
|
yield each_item['pixel'], each_item['label']
|
|
|
|
|
|
def main():
|
|
api.initPaddle("-use_gpu=false", "-trainer_count=4") # use 4 cpu cores
|
|
|
|
optimizer = paddle_v2.optimizer.Adam(
|
|
learning_rate=1e-4,
|
|
batch_size=1000,
|
|
model_average=ModelAverage(average_window=0.5),
|
|
regularization=L2Regularization(rate=0.5))
|
|
|
|
# Create Local Updater. Local means not run in cluster.
|
|
# For a cluster training, here we can change to createRemoteUpdater
|
|
# in future.
|
|
updater = optimizer.create_local_updater()
|
|
assert isinstance(updater, api.ParameterUpdater)
|
|
|
|
# define network
|
|
images = paddle_v2.layer.data(
|
|
name='pixel', type=paddle_v2.data_type.dense_vector(784))
|
|
label = paddle_v2.layer.data(
|
|
name='label', type=paddle_v2.data_type.integer_value(10))
|
|
hidden1 = paddle_v2.layer.fc(input=images, size=200)
|
|
hidden2 = paddle_v2.layer.fc(input=hidden1, size=200)
|
|
inference = paddle_v2.layer.fc(input=hidden2,
|
|
size=10,
|
|
act=paddle_v2.activation.Softmax())
|
|
cost = paddle_v2.layer.classification_cost(input=inference, label=label)
|
|
|
|
# Create Simple Gradient Machine.
|
|
model_config = paddle_v2.layer.parse_network(cost)
|
|
m = api.GradientMachine.createFromConfigProto(model_config,
|
|
api.CREATE_MODE_NORMAL,
|
|
optimizer.enable_types())
|
|
|
|
# This type check is not useful. Only enable type hint in IDE.
|
|
# Such as PyCharm
|
|
assert isinstance(m, api.GradientMachine)
|
|
|
|
# Initialize Parameter by numpy.
|
|
init_parameter(network=m)
|
|
|
|
# Initialize ParameterUpdater.
|
|
updater.init(m)
|
|
|
|
# DataProvider Converter is a utility convert Python Object to Paddle C++
|
|
# Input. The input format is as same as Paddle's DataProvider.
|
|
converter = DataProviderConverter(input_types=[images.type, label.type])
|
|
|
|
train_file = './data/raw_data/train'
|
|
test_file = './data/raw_data/t10k'
|
|
|
|
# start gradient machine.
|
|
# the gradient machine must be started before invoke forward/backward.
|
|
# not just for training, but also for inference.
|
|
m.start()
|
|
|
|
# evaluator can print error rate, etc. It is a C++ class.
|
|
batch_evaluator = m.makeEvaluator()
|
|
test_evaluator = m.makeEvaluator()
|
|
|
|
# Get Train Data.
|
|
# TrainData will stored in a data pool. Currently implementation is not care
|
|
# about memory, speed. Just a very naive implementation.
|
|
train_data_generator = input_order_converter(read_from_mnist(train_file))
|
|
train_data = BatchPool(train_data_generator, 512)
|
|
|
|
# outArgs is Neural Network forward result. Here is not useful, just passed
|
|
# to gradient_machine.forward
|
|
outArgs = api.Arguments.createArguments(0)
|
|
|
|
for pass_id in xrange(2): # we train 2 passes.
|
|
updater.startPass()
|
|
|
|
for batch_id, data_batch in enumerate(train_data()):
|
|
# data_batch is input images.
|
|
# here, for online learning, we could get data_batch from network.
|
|
|
|
# Start update one batch.
|
|
pass_type = updater.startBatch(len(data_batch))
|
|
|
|
# Start BatchEvaluator.
|
|
# batch_evaluator can be used between start/finish.
|
|
batch_evaluator.start()
|
|
|
|
# forwardBackward is a shortcut for forward and backward.
|
|
# It is sometimes faster than invoke forward/backward separately,
|
|
# because in GradientMachine, it may be async.
|
|
m.forwardBackward(converter(data_batch), outArgs, pass_type)
|
|
|
|
for each_param in m.getParameters():
|
|
updater.update(each_param)
|
|
|
|
# Get cost. We use numpy to calculate total cost for this batch.
|
|
cost_vec = outArgs.getSlotValue(0)
|
|
cost_vec = cost_vec.copyToNumpyMat()
|
|
cost = cost_vec.sum() / len(data_batch)
|
|
|
|
# Make evaluator works.
|
|
m.eval(batch_evaluator)
|
|
|
|
# Print logs.
|
|
print 'Pass id', pass_id, 'Batch id', batch_id, 'with cost=', \
|
|
cost, batch_evaluator
|
|
|
|
batch_evaluator.finish()
|
|
# Finish batch.
|
|
# * will clear gradient.
|
|
# * ensure all values should be updated.
|
|
updater.finishBatch(cost)
|
|
|
|
# testing stage. use test data set to test current network.
|
|
updater.apply()
|
|
test_evaluator.start()
|
|
test_data_generator = input_order_converter(read_from_mnist(test_file))
|
|
for data_batch in generator_to_batch(test_data_generator, 512):
|
|
# in testing stage, only forward is needed.
|
|
m.forward(converter(data_batch), outArgs, api.PASS_TEST)
|
|
m.eval(test_evaluator)
|
|
|
|
# print error rate for test data set
|
|
print 'Pass', pass_id, ' test evaluator: ', test_evaluator
|
|
test_evaluator.finish()
|
|
updater.restore()
|
|
|
|
updater.catchUpWith()
|
|
params = m.getParameters()
|
|
for each_param in params:
|
|
assert isinstance(each_param, api.Parameter)
|
|
value = each_param.getBuf(api.PARAMETER_VALUE)
|
|
value = value.copyToNumpyArray()
|
|
|
|
# Here, we could save parameter to every where you want
|
|
print each_param.getName(), value
|
|
|
|
updater.finishPass()
|
|
|
|
m.finish()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|