You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/distributed/parameter_prefetch.cc

310 lines
11 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
namespace paddle {
namespace operators {
namespace distributed {
using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;
static void SplitIdsIntoMultipleVarsBySection(
const std::vector<int64_t> &in_ids,
const std::vector<std::string> &in_varnames, const int tables,
const int pservers, const bool is_distibuted, framework::Scope *scope,
std::vector<std::vector<int64_t>> *splited_ids,
std::vector<std::vector<int64_t>> *origin_ids) {
PADDLE_ENFORCE_EQ(
in_varnames.size(), tables,
platform::errors::OutOfRange(
"send varnames size: %d not equal table number: %d, internal error",
in_varnames.size(), tables));
PADDLE_ENFORCE_LE(
tables, pservers,
platform::errors::OutOfRange("table number %d not equal or less than "
"pserver number: %d, internal error",
tables, pservers));
auto place = platform::CPUPlace();
std::set<int64_t> st(in_ids.begin(), in_ids.end());
std::vector<int64_t> all_ids;
all_ids.assign(st.begin(), st.end());
splited_ids->resize(tables);
origin_ids->resize(tables);
if (is_distibuted) {
for (auto &id : all_ids) {
auto pserver_id = id % pservers;
(*splited_ids)[pserver_id].push_back(id);
(*origin_ids)[pserver_id].push_back(id);
}
} else {
for (auto &id : all_ids) {
auto pserver_id = id % pservers;
(*origin_ids)[pserver_id].push_back(id);
id = id / pservers;
(*splited_ids)[pserver_id].push_back(id);
}
}
for (size_t i = 0; i < in_varnames.size(); ++i) {
auto *id_tensor =
scope->Var(in_varnames[i])->GetMutable<framework::LoDTensor>();
auto &ids = (*splited_ids)[i];
if (!ids.empty()) {
auto *id_tensor_data = id_tensor->mutable_data<int64_t>(
framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
}
}
}
typedef std::vector<std::pair<std::string, std::string>> TableAndEndpoints;
void prefetch_core(
const std::vector<int64_t> &ids, const TableAndEndpoints &tables,
const framework::ExecutionContext &context, const framework::Scope &scope,
const bool is_distributed,
std::unordered_map<int64_t, std::vector<float>> *recved_vec_map) {
distributed::RPCClient *rpc_client =
distributed::RPCClient::GetInstance<RPCCLIENT_T>(
context.Attr<int>("trainer_id"));
int pservers = context.Attr<int>("pserver_num");
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &actual_ctx = *pool.Get(platform::CPUPlace());
std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();
std::vector<std::string> in_var_names;
std::vector<std::string> out_var_names;
for (size_t i = 0; i < tables.size(); ++i) {
in_var_names.push_back("prefetch_send@" + tables[i].second);
out_var_names.push_back("prefetch_recv@" + tables[i].second);
}
std::vector<std::vector<int64_t>> split_ids;
std::vector<std::vector<int64_t>> origin_ids;
SplitIdsIntoMultipleVarsBySection(ids, in_var_names, tables.size(), pservers,
is_distributed, local_scope.get(),
&split_ids, &origin_ids);
// create output var in local scope
for (auto &name : out_var_names) {
local_scope->Var(name)->GetMutable<framework::LoDTensor>();
}
std::vector<distributed::VarHandlePtr> rets;
for (size_t i = 0; i < in_var_names.size(); i++) {
if (NeedSend(*local_scope.get(), in_var_names[i])) {
VLOG(3) << "sending " << in_var_names[i] << " to " << tables[i].second
<< " to get " << out_var_names[i] << " back";
rets.push_back(rpc_client->AsyncPrefetchVar(
tables[i].second, actual_ctx, *local_scope.get(), in_var_names[i],
out_var_names[i], tables[i].first));
} else {
VLOG(3) << "don't send no-initialied variable: " << out_var_names[i];
}
}
for (size_t i = 0; i < rets.size(); i++) {
PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, platform::errors::ExecutionTimeout(
"internal error in RPCClient"));
}
for (size_t o_idx = 0; o_idx < out_var_names.size(); ++o_idx) {
auto &ids_in_this_section = origin_ids[o_idx];
if (!ids_in_this_section.empty()) {
auto &prefetch_out_var =
local_scope->Var(out_var_names[o_idx])->Get<framework::LoDTensor>();
const auto *out_var_data = prefetch_out_var.data<float>();
auto &dims = prefetch_out_var.dims();
PADDLE_ENFORCE_EQ(dims.size(), 2, "");
PADDLE_ENFORCE_EQ(ids_in_this_section.size(), dims[0]);
auto row_numel = dims[1];
for (int64_t i = 0; i < dims[0]; ++i) {
auto origin_id = ids_in_this_section[i];
std::vector<float> vecs(row_numel);
std::copy_n(out_var_data + i * row_numel, row_numel, vecs.begin());
(*recved_vec_map)[origin_id] = vecs;
}
} else {
VLOG(3) << "ids in this section is empty";
}
}
}
void prefetch(const std::string &id_name, const std::string &out_name,
const std::string &persistable_var_name,
const bool is_distributed,
const std::vector<std::string> &table_names,
const std::vector<std::string> &endpoints,
const framework::ExecutionContext &context,
const framework::Scope &scope) {
prefetchs({id_name}, {out_name}, persistable_var_name, is_distributed,
table_names, endpoints, context, scope);
}
void prefetchs(const std::vector<std::string> &id_var_names,
const std::vector<std::string> &out_var_names,
const std::string &persistable_var_name,
const bool is_distributed,
const std::vector<std::string> &table_names,
const std::vector<std::string> &endpoints,
const framework::ExecutionContext &context,
const framework::Scope &scope) {
auto vec_dim_1 = 0;
auto vec_dim_0 = 0;
framework::Variable *var = scope.FindVar(persistable_var_name);
if (var->IsType<SelectedRows>()) {
vec_dim_1 = var->Get<framework::SelectedRows>().value().dims()[1];
} else {
vec_dim_0 = var->Get<framework::LoDTensor>().dims()[0];
vec_dim_1 = var->Get<framework::LoDTensor>().dims()[1];
}
PADDLE_ENFORCE_GT(vec_dim_1, 0,
platform::errors::InvalidArgument(
"lookup table var's dim must gather than 0"));
const auto place =
scope.FindVar(id_var_names[0])->Get<framework::LoDTensor>().place();
std::vector<std::vector<int64_t>> ids_group;
std::vector<int64_t> ids_union;
std::vector<framework::LoD> ids_lods;
TableAndEndpoints tables;
for (auto &id_name : id_var_names) {
auto &id_tensor = scope.FindVar(id_name)->Get<framework::LoDTensor>();
std::vector<int64_t> ids;
TensorToVector(id_tensor, context.device_context(), &ids);
ids_union.insert(ids_union.end(), ids.begin(), ids.end());
ids_group.push_back(ids);
ids_lods.push_back(id_tensor.lod());
}
std::unordered_set<int64_t> s(ids_union.begin(), ids_union.end());
ids_union.assign(s.begin(), s.end());
for (auto &i : ids_union) {
PADDLE_ENFORCE_GE(
i, 0, platform::errors::OutOfRange(
"each element in embedding should be larger or equal 0"));
if (!is_distributed) {
PADDLE_ENFORCE_LT(
i, vec_dim_0,
platform::errors::OutOfRange(
"embedding id must in [0, %d) when is_distributed False",
vec_dim_0));
}
}
for (size_t i = 0; i < table_names.size(); i++) {
tables.push_back(std::make_pair(table_names[i], endpoints[i]));
}
std::unordered_map<int64_t, std::vector<float>> recved_vec_map;
prefetch_core(ids_union, tables, context, scope, is_distributed,
&recved_vec_map);
auto padding_idx = distributed::kNoPadding;
if (context.HasAttr("padding_idx")) {
padding_idx = context.Attr<int64_t>("padding_idx");
}
for (size_t i = 0; i < out_var_names.size(); i++) {
std::vector<int64_t> ids = ids_group[i];
auto ids_size = ids.size();
auto *out_t =
scope.FindVar(out_var_names[i])->GetMutable<framework::LoDTensor>();
out_t->set_lod(ids_lods[i]);
out_t->Resize(
framework::make_ddim({static_cast<int64_t>(ids_size), vec_dim_1}));
auto *out_d = out_t->mutable_data<float>(place);
if (platform::is_cpu_place(out_t->place())) {
for (auto idx = 0; idx < static_cast<int>(ids_size); idx++) {
const auto &id = ids[idx];
if (padding_idx != distributed::kNoPadding && id == padding_idx) {
memset(out_d + idx * vec_dim_1, 0, sizeof(float) * vec_dim_1);
} else {
std::copy_n(recved_vec_map[id].begin(), vec_dim_1,
out_d + idx * vec_dim_1);
}
}
} else {
#ifdef PADDLE_WITH_CUDA
for (auto idx = 0; idx < static_cast<int>(ids_size); idx++) {
const auto &id = ids[idx];
auto stream = context.cuda_device_context().stream();
if (padding_idx != distributed::kNoPadding && id == padding_idx) {
platform::GpuMemsetAsync(out_d + idx * vec_dim_1, 0,
sizeof(float) * vec_dim_1, stream);
} else {
auto &cpu_place =
BOOST_GET_CONST(platform::CPUPlace,
paddle::platform::CPUDeviceContext().GetPlace());
auto &gpu_place =
BOOST_GET_CONST(platform::CUDAPlace, out_t->place());
memory::Copy(gpu_place, out_d + idx * vec_dim_1, cpu_place,
&recved_vec_map[id][0], sizeof(float) * vec_dim_1,
stream);
}
}
#else
PADDLE_ENFORCE(true, platform::errors::PermissionDenied(
"Paddle is not compiled with GPU!"));
#endif
}
}
}
}; // namespace distributed
}; // namespace operators
}; // namespace paddle