You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/demo/quick_start/trainer_config.lr.py

74 lines
2.6 KiB

# edit-mode: -*- python -*-
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
dict_file = "./data/dict.txt"
word_dict = dict()
with open(dict_file, 'r') as f:
for i, line in enumerate(f):
w = line.strip().split()[0]
word_dict[w] = i
is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
# define the data sources for the model.
# We need to use different process for training and prediction.
# For training, the input data includes both word IDs and labels.
# For prediction, the input data only includs word Ids.
define_py_data_sources2(train_list=trn,
test_list=tst,
module="dataprovider_bow",
obj=process,
args={"dictionary": word_dict})
batch_size = 128 if not is_predict else 1
settings(
batch_size=batch_size,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25
)
# Define the data for text features. The size of the data layer is the number
# of words in the dictionary.
data = data_layer(name="word", size=len(word_dict))
# Define a fully connected layer with logistic activation.
# (also called softmax activation).
output = fc_layer(input=data, size=2, act=SoftmaxActivation())
if not is_predict:
# For training, we need label and cost
# define the category id for each example.
# The size of the data layer is the number of labels.
label = data_layer(name="label", size=2)
# Define cross-entropy classification loss and error.
classification_cost(input=output, label=label)
cls = classification_cost(input=output, label=label)
outputs(cls)
else:
# For prediction, no label is needed. We need to output
# We need to output classification result, and class probabilities.
maxid = maxid_layer(output)
outputs([maxid, output])