You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
80 lines
2.8 KiB
80 lines
2.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <time.h>
|
|
#include <iostream>
|
|
#include "gflags/gflags.h"
|
|
#include "paddle/inference/inference.h"
|
|
|
|
DEFINE_string(dirname, "", "Directory of the inference model.");
|
|
DEFINE_string(feed_var_names, "", "Names of feeding variables");
|
|
DEFINE_string(fetch_var_names, "", "Names of fetching variables");
|
|
|
|
int main(int argc, char** argv) {
|
|
google::ParseCommandLineFlags(&argc, &argv, true);
|
|
if (FLAGS_dirname.empty() || FLAGS_feed_var_names.empty() ||
|
|
FLAGS_fetch_var_names.empty()) {
|
|
// Example:
|
|
// ./example --dirname=recognize_digits_mlp.inference.model
|
|
// --feed_var_names="x"
|
|
// --fetch_var_names="fc_2.tmp_2"
|
|
std::cout << "Usage: ./example --dirname=path/to/your/model "
|
|
"--feed_var_names=x --fetch_var_names=y"
|
|
<< std::endl;
|
|
exit(1);
|
|
}
|
|
|
|
std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
|
|
std::cout << "FLAGS_feed_var_names: " << FLAGS_feed_var_names << std::endl;
|
|
std::cout << "FLAGS_fetch_var_names: " << FLAGS_fetch_var_names << std::endl;
|
|
|
|
std::string dirname = FLAGS_dirname;
|
|
std::vector<std::string> feed_var_names = {FLAGS_feed_var_names};
|
|
std::vector<std::string> fetch_var_names = {FLAGS_fetch_var_names};
|
|
|
|
paddle::InferenceEngine* engine = new paddle::InferenceEngine();
|
|
engine->LoadInferenceModel(dirname, feed_var_names, fetch_var_names);
|
|
|
|
paddle::framework::LoDTensor input;
|
|
srand(time(0));
|
|
float* input_ptr =
|
|
input.mutable_data<float>({1, 784}, paddle::platform::CPUPlace());
|
|
for (int i = 0; i < 784; ++i) {
|
|
input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
|
|
}
|
|
|
|
std::vector<paddle::framework::LoDTensor> feeds;
|
|
feeds.push_back(input);
|
|
std::vector<paddle::framework::LoDTensor> fetchs;
|
|
engine->Execute(feeds, fetchs);
|
|
|
|
for (size_t i = 0; i < fetchs.size(); ++i) {
|
|
auto dims_i = fetchs[i].dims();
|
|
std::cout << "dims_i:";
|
|
for (int j = 0; j < dims_i.size(); ++j) {
|
|
std::cout << " " << dims_i[j];
|
|
}
|
|
std::cout << std::endl;
|
|
std::cout << "result:";
|
|
float* output_ptr = fetchs[i].data<float>();
|
|
for (int j = 0; j < paddle::framework::product(dims_i); ++j) {
|
|
std::cout << " " << output_ptr[j];
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
delete engine;
|
|
return 0;
|
|
}
|