You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_dist_mnist.py

211 lines
6.9 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import argparse
import time
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()
# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=data,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu")
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu")
# TODO(dzhwinter) : refine the initializer and random seed settting
SIZE = 10
input_shape = conv_pool_2.shape
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
predict = fluid.layers.fc(
input=conv_pool_2,
size=SIZE,
act="softmax",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)))
return predict
def get_model(batch_size):
# Input data
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
inference_program = fluid.default_main_program().clone()
# Optimization
opt = fluid.optimizer.AdamOptimizer(
learning_rate=0.001, beta1=0.9, beta2=0.999)
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=batch_size)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)
opt.minimize(avg_cost)
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id=trainer_id,
program=main_program,
pservers=pserver_endpoints,
trainers=trainers)
return t
def run_pserver(pserver_endpoints, trainers, current_endpoint):
get_model(batch_size=20)
t = get_transpiler(0,
fluid.default_main_program(), pserver_endpoints,
trainers)
pserver_prog = t.get_pserver_program(current_endpoint)
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
exe.run(pserver_prog)
class TestDistMnist(unittest.TestCase):
def setUp(self):
self._trainers = 1
self._pservers = 1
self._ps_endpoints = "127.0.0.1:9123"
def start_pserver(self, endpoint):
p = Process(
target=run_pserver,
args=(self._ps_endpoints, self._trainers, endpoint))
p.start()
return p.pid
def _wait_ps_ready(self, pid):
retry_times = 5
while True:
assert retry_times >= 0, "wait ps ready failed"
time.sleep(1)
try:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os.stat("/tmp/paddle.%d.port" % pid)
return
except os.error:
retry_times -= 1
def stop_pserver(self, pid):
os.kill(pid, signal.SIGTERM)
def test_with_place(self):
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
pserver_pid = self.start_pserver(self._ps_endpoints)
self._wait_ps_ready(pserver_pid)
self.run_trainer(p, 0)
self.stop_pserver(pserver_pid)
def run_trainer(self, place, trainer_id):
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = get_model(
batch_size=20)
t = get_transpiler(trainer_id,
fluid.default_main_program(), self._ps_endpoints,
self._trainers)
trainer_prog = t.get_trainer_program()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
feed_var_list = [
var for var in trainer_prog.global_block().vars.itervalues()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
for pass_id in xrange(10):
for batch_id, data in enumerate(train_reader()):
exe.run(trainer_prog, feed=feeder.feed(data))
if (batch_id + 1) % 10 == 0:
acc_set = []
avg_loss_set = []
for test_data in test_reader():
acc_np, avg_loss_np = exe.run(
program=test_program,
feed=feeder.feed(test_data),
fetch_list=[batch_acc, avg_cost])
acc_set.append(float(acc_np))
avg_loss_set.append(float(avg_loss_np))
# get test acc and loss
acc_val = np.array(acc_set).mean()
avg_loss_val = np.array(avg_loss_set).mean()
if float(acc_val
) > 0.8: # Smaller value to increase CI speed
return
else:
print(
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
format(pass_id, batch_id + 1,
float(avg_loss_val), float(acc_val)))
if math.isnan(float(avg_loss_val)):
assert ("got Nan loss, training failed.")
if __name__ == "__main__":
unittest.main()