You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
167 lines
6.2 KiB
167 lines
6.2 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/cvm_op.h"
|
|
#include <memory>
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
class CVMOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "CVM");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "CVM");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, platform::errors::InvalidArgument(
|
|
"Input(X)'s rank should be 2."));
|
|
|
|
if (ctx->Attrs().Get<bool>("use_cvm")) {
|
|
ctx->SetOutputDim("Y", {x_dims[0], x_dims[1]});
|
|
} else {
|
|
ctx->SetOutputDim("Y", {x_dims[0], x_dims[1] - 2});
|
|
}
|
|
ctx->ShareLoD("X", /*->*/ "Y");
|
|
}
|
|
|
|
protected:
|
|
// Explicitly set that the data type of computation kernel of
|
|
// cvm
|
|
// is determined by its input "X".
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class CVMGradientOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "CVMGradient");
|
|
OP_INOUT_CHECK(ctx->HasInput("CVM"), "Input", "CVM", "CVMGradient");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
|
|
framework::GradVarName("Y"), "CVMGradient");
|
|
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
|
|
framework::GradVarName("X"), "CVMGradient");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto cvm_dims = ctx->GetInputDim("CVM");
|
|
auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2, platform::errors::InvalidArgument(
|
|
"Input(X)'s rank should be 2."));
|
|
PADDLE_ENFORCE_EQ(
|
|
dy_dims.size(), 2,
|
|
platform::errors::InvalidArgument("Input(Y@Grad)'s rank should be 2."));
|
|
PADDLE_ENFORCE_EQ(
|
|
cvm_dims.size(), 2,
|
|
platform::errors::InvalidArgument("Input(CVM)'s rank should be 2."));
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
x_dims[0], dy_dims[0],
|
|
platform::errors::InvalidArgument(
|
|
"The 1st dimension of Input(X) and Input(Y@Grad) should "
|
|
"be equal."));
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
cvm_dims[1], 2,
|
|
platform::errors::InvalidArgument(
|
|
"When Attr(soft_label) == false, the 2nd dimension of "
|
|
"Input(CVM) should be 2."));
|
|
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
|
ctx->ShareLoD("X", framework::GradVarName("X"));
|
|
}
|
|
|
|
protected:
|
|
// Explicitly set that the data type of computation kernel of
|
|
// cvm
|
|
// is determined by its input "X".
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Y")),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class CVMOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(LodTensor, default LodTensor<float>), a 2-D tensor with shape "
|
|
"[N x D],"
|
|
" where N is the batch size and D is the emebdding dim. ");
|
|
AddInput("CVM",
|
|
"(Tensor), a 2-D Tensor with shape [N x 2], where N is the batch "
|
|
"size, 2 is show and click.");
|
|
AddOutput("Y",
|
|
"(LodTensor, default LodTensor<float>), a 2-D tensor with shape "
|
|
"[N x K].");
|
|
AddAttr<bool>("use_cvm", "bool, use cvm or not").SetDefault(true);
|
|
AddComment(R"DOC(
|
|
CVM Operator.
|
|
|
|
We assume that input X is a embedding vector with cvm_feature(show and click), which shape is [N * D] (D is 2(cvm_feature) + embedding dim, N is batch_size)
|
|
if use_cvm is True, we will log(cvm_feature), and output shape is [N * D].
|
|
if use_cvm is False, we will remove cvm_feature from input, and output shape is [N * (D - 2)].
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CVMGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("cvm_grad");
|
|
op->SetInput("CVM", this->Input("CVM"));
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(CVMNoNeedBufferVarInferer, "CVM");
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(CVMGradNoNeedBufferVarInferer, "X");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(cvm, ops::CVMOp, ops::CVMOpMaker,
|
|
ops::CVMGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::CVMGradOpMaker<paddle::imperative::OpBase>,
|
|
ops::CVMNoNeedBufferVarInferer);
|
|
|
|
REGISTER_OPERATOR(cvm_grad, ops::CVMGradientOp,
|
|
ops::CVMGradNoNeedBufferVarInferer);
|
|
|
|
REGISTER_OP_CPU_KERNEL(cvm, ops::CVMOpKernel<float>, ops::CVMOpKernel<double>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(cvm_grad, ops::CVMGradOpKernel<float>,
|
|
ops::CVMGradOpKernel<double>);
|