You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/parallel_executor.cc

826 lines
24 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h"
#include "ThreadPool.h"
#include "executor.h"
#include "lod_tensor.h"
#include "lod_tensor_array.h"
#include "op_registry.h"
#include "paddle/fluid/operators/math/concat.h"
namespace paddle {
namespace framework {
#ifdef PADDLE_WITH_CUDA
// FIXME: CHECK the return value of x;
#define NCCL_INVOKE(x) x
#endif
struct OpHandle;
struct VarHandleBase {
virtual ~VarHandleBase() {}
virtual std::string DebugString() const = 0;
OpHandle *generated_op_;
std::unordered_set<OpHandle *> pending_ops_;
};
struct VarHandle : public VarHandleBase {
std::string DebugString() const override {
std::stringstream ss;
ss << name_ << ":" << place_;
return ss.str();
}
// version field currently is not used, however, just store the version to
// debug easily.
size_t version_;
std::string name_;
platform::Place place_;
};
struct DummyVarHandle : public VarHandleBase {
std::string DebugString() const override { return "dummy"; }
};
struct DependencyVarHandle : public VarHandleBase {
std::string DebugString() const override { return "Dependency Variable"; }
};
struct OpHandle {
std::vector<VarHandleBase *> inputs_;
std::vector<VarHandleBase *> outputs_;
std::unordered_map<platform::Place, platform::DeviceContext *,
platform::PlaceHash>
dev_ctx_;
std::unordered_map<int, cudaEvent_t> events_;
std::string DebugString() {
std::stringstream ss;
ss << "(";
for (auto *var : inputs_) {
ss << var->DebugString() << ", ";
}
ss << ") --> (";
for (auto *var : outputs_) {
ss << var->DebugString() << ", ";
}
ss << ")\n";
return ss.str();
}
virtual ~OpHandle() {}
void Run(bool use_event) {
if (events_.empty() && use_event) {
for (auto &p : dev_ctx_) {
int dev_id = boost::get<platform::CUDAPlace>(p.first).device;
cudaSetDevice(dev_id);
cudaEventCreateWithFlags(&events_[dev_id], cudaEventDisableTiming);
}
}
RunImpl();
if (use_event) {
for (auto &p : dev_ctx_) {
int dev_id = boost::get<platform::CUDAPlace>(p.first).device;
auto stream =
static_cast<platform::CUDADeviceContext *>(p.second)->stream();
cudaEventRecord(events_.at(dev_id), stream);
}
}
}
virtual void Wait(platform::DeviceContext *waited_dev) {
if (platform::is_cpu_place(waited_dev->GetPlace()) || events_.empty()) {
for (auto &dev_ctx : dev_ctx_) {
dev_ctx.second->Wait();
}
} else {
auto stream =
static_cast<platform::CUDADeviceContext *>(waited_dev)->stream();
for (auto &ev : events_) {
PADDLE_ENFORCE(cudaStreamWaitEvent(stream, ev.second, 0));
}
}
}
protected:
virtual void RunImpl() = 0;
};
struct ScaleLossGradOpHandle : public OpHandle {
float coeff_;
Scope *scope_;
platform::Place place_;
explicit ScaleLossGradOpHandle(size_t num_dev, Scope *scope,
platform::Place place)
: coeff_(static_cast<float>(1.0 / num_dev)),
scope_(scope),
place_(place) {}
~ScaleLossGradOpHandle() {}
protected:
void RunImpl() override {
std::string var_name = static_cast<VarHandle *>(this->outputs_[0])->name_;
float *tmp = scope_->FindVar(var_name)
->GetMutable<framework::LoDTensor>()
->mutable_data<float>(make_ddim({1}), place_);
if (platform::is_cpu_place(place_)) {
*tmp = coeff_;
} else {
auto stream =
static_cast<platform::CUDADeviceContext *>(this->dev_ctx_[place_])
->stream();
memory::Copy(boost::get<platform::CUDAPlace>(place_), tmp,
platform::CPUPlace(), &coeff_, sizeof(float), stream);
}
}
};
struct FetchedData {
public:
std::vector<framework::LoDTensor> tensors_;
explicit FetchedData(size_t num_fetched) { tensors_.resize(num_fetched); }
};
struct FetchOpHandle : public OpHandle {
std::shared_ptr<FetchedData> data_;
size_t offset_;
std::vector<Scope *> *local_scopes_;
std::vector<LoDTensor> tensors_;
~FetchOpHandle() {
for (auto *input_var : inputs_) {
input_var->pending_ops_.erase(this);
}
// Lazily merge tensors. Will faster code.
MergeTensors();
}
void Wait(platform::DeviceContext *waited_dev) override {
PADDLE_THROW("Nobody should wait FetchOp. Unexpceted Error");
}
protected:
void RunImpl() override {
for (auto *input : inputs_) {
auto *var = static_cast<VarHandle *>(input);
var->generated_op_->Wait(this->dev_ctx_[var->place_]);
}
tensors_.resize(inputs_.size());
auto *var = static_cast<VarHandle *>(inputs_[0]);
auto &var_name = var->name_;
platform::CPUPlace cpu;
auto &scopes = *local_scopes_;
for (size_t i = 0; i < scopes.size(); ++i) {
auto &scope = scopes[i];
auto &t = scope->FindVar(var_name)->Get<framework::LoDTensor>();
if (platform::is_gpu_place(var->place_)) {
TensorCopy(t, cpu, *dev_ctx_[t.place()], &tensors_[i]);
} else {
tensors_[i].ShareDataWith(t);
tensors_[i].set_lod(t.lod());
}
}
}
private:
void MergeTensors() const {
std::vector<const LoDTensor *> tensors_ptr;
for (auto &t : tensors_) {
tensors_ptr.emplace_back(&t);
}
data_->tensors_[offset_].MergeLoDTensor(tensors_ptr, platform::CPUPlace());
}
};
class ParallelExecutorPrivate {
public:
explicit ParallelExecutorPrivate(size_t num_threads)
: pool_(num_threads <= 1 ? nullptr : new ThreadPool(num_threads)) {}
std::vector<platform::Place> places_;
std::vector<Scope *> local_scopes_;
Scope *global_scope_;
#ifdef PADDLE_WITH_CUDA
struct NCCLContext {
std::unique_ptr<platform::CUDADeviceContext> ctx_;
ncclComm_t comm;
explicit NCCLContext(int dev_id) {
ctx_.reset(new platform::CUDADeviceContext(platform::CUDAPlace(dev_id)));
}
cudaStream_t stream() const { return ctx_->stream(); }
int device_id() const {
return boost::get<platform::CUDAPlace>(ctx_->GetPlace()).device;
}
static void InitNCCLContext(std::unordered_map<int, NCCLContext> &contexts,
const std::vector<platform::Place> &places) {
std::vector<ncclComm_t> comms;
std::vector<int> devs;
comms.resize(contexts.size());
devs.reserve(contexts.size());
for (auto &p : places) {
devs.push_back(boost::get<platform::CUDAPlace>(p).device);
}
NCCL_INVOKE(platform::dynload::ncclCommInitAll(
&comms[0], static_cast<int>(contexts.size()), &devs[0]));
int i = 0;
for (auto &dev_id : devs) {
contexts.at(dev_id).comm = comms[i++];
}
}
};
std::unordered_map<int, NCCLContext> communication_streams_;
NCCLContext &GetNCCLCtx(platform::Place p) {
int dev_id = boost::get<platform::CUDAPlace>(p).device;
return communication_streams_.at(dev_id);
}
#endif
platform::DeviceContext *CommunicationDevCtx(const platform::Place &place) {
if (platform::is_cpu_place(place) || local_scopes_.size() == 1) {
return const_cast<platform::DeviceContext *>(
platform::DeviceContextPool::Instance().Get(place));
} else {
#ifdef PADDLE_WITH_CUDA
return GetNCCLCtx(place).ctx_.get();
#else
PADDLE_THROW("Not compiled with CUDA")
#endif
}
}
platform::Place main_place_;
std::unordered_map<platform::Place,
std::unordered_map<std::string, std::map<int, VarHandle>>,
platform::PlaceHash>
vars_;
std::unordered_set<std::unique_ptr<VarHandleBase>> dep_vars_;
std::vector<std::unique_ptr<OpHandle>> ops_;
// Use a simpler thread pool, might be faster.
std::unique_ptr<ThreadPool> pool_;
std::unique_ptr<platform::EnforceNotMet> exception_;
};
// TODO(yy): Move this function somewhere
ncclDataType_t ToNCCLDataType(std::type_index type) {
if (type == typeid(float)) { // NOLINT
return ncclFloat;
} else if (type == typeid(double)) { // NOLINT
return ncclDouble;
} else if (type == typeid(int)) { // NOLINT
return ncclInt;
} else {
PADDLE_THROW("Not supported");
}
}
static std::mutex g_nccl_mtx_;
struct NCCLAllReduceOpHandle : public OpHandle {
ParallelExecutorPrivate *member_;
explicit NCCLAllReduceOpHandle(ParallelExecutorPrivate *member)
: member_(member) {}
void Wait(platform::DeviceContext *waited_dev) override {
VLOG(3) << "Wait nccl all reduce op";
OpHandle::Wait(waited_dev);
}
protected:
void RunImpl() override {
if (this->inputs_.size() == 1) {
return; // No need to all reduce when GPU count = 1;
} else {
// Wait input done
for (auto *in : inputs_) {
auto &p = static_cast<VarHandle *>(in)->place_;
in->generated_op_->Wait(dev_ctx_[p]);
}
auto &var_name = static_cast<VarHandle *>(this->inputs_[0])->name_;
int dtype = -1;
size_t numel = 0;
std::lock_guard<std::mutex> g(g_nccl_mtx_);
PADDLE_ENFORCE(platform::dynload::ncclGroupStart());
for (size_t i = 0; i < member_->local_scopes_.size(); ++i) {
auto &p = member_->places_[i];
auto *s = member_->local_scopes_[i];
int dev_id = boost::get<platform::CUDAPlace>(p).device;
auto &lod_tensor = s->FindVar(var_name)->Get<framework::LoDTensor>();
void *buffer = const_cast<void *>(lod_tensor.data<void>());
if (dtype == -1) {
dtype = ToNCCLDataType(lod_tensor.type());
}
if (numel == 0) {
numel = static_cast<size_t>(lod_tensor.numel());
}
auto &nccl_ctx = member_->communication_streams_.at(dev_id);
PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
buffer, buffer, numel, static_cast<ncclDataType_t>(dtype), ncclSum,
nccl_ctx.comm, nccl_ctx.stream()));
}
PADDLE_ENFORCE(platform::dynload::ncclGroupEnd());
}
}
};
struct ComputationOpHandle : public OpHandle {
std::unique_ptr<OperatorBase> op_;
Scope *scope_;
platform::Place place_;
explicit ComputationOpHandle(const OpDesc &op_desc, Scope *scope,
platform::Place place)
: op_(framework::OpRegistry::CreateOp(op_desc)),
scope_(scope),
place_(place) {}
protected:
void RunImpl() override {
auto *cur_ctx = dev_ctx_[place_];
for (auto *in : inputs_) {
bool need_wait =
in->generated_op_ && in->generated_op_->dev_ctx_[place_] != cur_ctx;
if (need_wait) {
in->generated_op_->Wait(cur_ctx);
}
}
op_->Run(*scope_, place_);
}
};
ParallelExecutor::ParallelExecutor(
size_t num_threads, const std::vector<platform::Place> &places,
const std::unordered_set<std::string> &params,
const ProgramDesc &startup_program, const ProgramDesc &main_program,
const std::string &loss_var_name, Scope *scope)
: member_(new ParallelExecutorPrivate(num_threads)) {
member_->places_ = places;
member_->global_scope_ = scope;
// Step 1. RunStartupProgram and Bcast the params to devs.
Executor exe(places[0]);
exe.Run(startup_program, scope, 0);
// Create local scopes
for (size_t i = 0; i < member_->places_.size(); ++i) {
member_->local_scopes_.push_back(&scope->NewScope());
}
member_->main_place_ = places[0];
// Bcast Parameters to all GPUs
BuildNCCLCommunicator();
if (platform::is_gpu_place(member_->main_place_) &&
member_->local_scopes_.size() != 1) { // Is CUDA
BCastParamsToGPUs(startup_program);
}
// Startup Program has been run. All local scopes has correct parameters.
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
ConstructDependencyGraph(params, main_program, loss_var_name);
// Step 3. Create vars in each scope;
for (auto *scope : member_->local_scopes_) {
for (auto *var : main_program.Block(0).AllVars()) {
if (scope->FindVar(var->Name()) != nullptr) {
continue;
}
InitializeVariable(scope->Var(var->Name()), var->GetType());
}
}
}
void ParallelExecutor::ConstructDependencyGraph(
const std::unordered_set<std::string> &params,
const ProgramDesc &main_program, const std::string &loss_var_name) const {
std::unordered_set<std::string> grads;
for (auto &each_param : params) {
grads.insert(each_param + "@GRAD");
}
bool is_forwarding = true;
for (auto *op : main_program.Block(0).AllOps()) {
bool change_forward = false;
if (!is_forwarding) {
// FIXME(yy): Do not hard code like this
if (op->OutputArgumentNames().size() == 1 &&
op->OutputArgumentNames()[0] == loss_var_name + "@GRAD") {
continue; // Drop fill 1. for backward coeff;
}
}
for (size_t i = 0; i < member_->places_.size(); ++i) {
auto &p = member_->places_[i];
auto *s = member_->local_scopes_[i];
member_->ops_.emplace_back(new ComputationOpHandle(*op, s, p));
auto *op_handle = member_->ops_.back().get();
op_handle->dev_ctx_[p] = const_cast<platform::DeviceContext *>(
platform::DeviceContextPool::Instance().Get(p));
auto var_names = op->InputArgumentNames();
for (auto &each_var_name : var_names) {
VarHandle *var = GetVarHandle(each_var_name, p);
op_handle->inputs_.emplace_back(var);
var->pending_ops_.emplace(op_handle);
}
var_names = op->OutputArgumentNames();
for (auto &each_var_name : var_names) {
GenerateVar(op_handle, each_var_name, p);
}
if (is_forwarding) {
if (var_names.size() == 1 && var_names[0] == loss_var_name) {
// Insert ScaleCost OpHandle
member_->ops_.emplace_back(new ScaleLossGradOpHandle(
this->member_->local_scopes_.size(), s, p));
op_handle = member_->ops_.back().get();
op_handle->dev_ctx_[p] = member_->CommunicationDevCtx(p);
// FIXME: Currently ScaleLossGradOp only use device_count as scale
// factor. So it does not depend on any other operators.
// VarHandle *loss = GetVarHandle(loss_var_name, place);
// loss->pending_ops_.emplace_back(op_handle);
// op_handle->inputs_.emplace_back(loss);
GenerateVar(op_handle, loss_var_name + "@GRAD", p);
change_forward = true;
}
}
}
if (change_forward) {
is_forwarding = false;
}
if (!is_forwarding) {
auto var_names = op->OutputArgumentNames();
for (auto &og : var_names) {
if (grads.count(og) != 0) { // is param grad
// Insert NCCL AllReduce Op
member_->ops_.emplace_back(new NCCLAllReduceOpHandle(member_));
auto *op_handle = member_->ops_.back().get();
for (size_t i = 0; i < member_->places_.size(); ++i) {
auto &p = member_->places_[i];
auto &vars = member_->vars_[p][og];
if (vars.empty()) { // This device has no data. continue.
continue;
}
auto *prev_grad = &vars[vars.size() - 1];
op_handle->inputs_.emplace_back(prev_grad);
prev_grad->pending_ops_.emplace(op_handle);
auto &var = vars[vars.size()];
var.place_ = p;
var.generated_op_ = op_handle;
var.name_ = og;
var.version_ = vars.size() - 1;
op_handle->outputs_.emplace_back(&var);
op_handle->dev_ctx_[p] = member_->CommunicationDevCtx(p);
}
}
}
}
}
/*
Dependency graph has been constructed. However, there are still data
harzaeds need to be handled.
*/
PolishGraphToSupportDataHazards();
}
/**
* We only handle write after read(WAR), since it should not have a write
* after write in program. If there are write after write operators, we need
* prune them.
*
* https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
*/
void ParallelExecutor::PolishGraphToSupportDataHazards() const {
for (auto &place_pair : member_->vars_) {
for (auto &name_pair : place_pair.second) {
if (name_pair.second.size() <= 1) {
return;
}
auto it_new = name_pair.second.rbegin();
auto it_old = name_pair.second.rbegin();
++it_old;
for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
auto *write_op = it_new->second.generated_op_;
auto &read_ops = it_old->second.pending_ops_;
auto *ex_write_op = it_old->second.generated_op_;
if (ex_write_op == nullptr) { // Nobody write this var.
continue;
}
for (auto *read_op : read_ops) {
// Manually add a dependency var from read_op to write_op;
if (read_op == write_op) {
// Read Write is the same op.
continue;
}
auto *dep_var = new DependencyVarHandle();
dep_var->generated_op_ = read_op;
read_op->outputs_.emplace_back(dep_var);
dep_var->pending_ops_.emplace(write_op);
write_op->inputs_.emplace_back(dep_var);
member_->dep_vars_.emplace(dep_var);
}
}
}
}
}
void ParallelExecutor::GenerateVar(OpHandle *op_handle,
const std::string &each_var_name,
const platform::Place &place) const {
auto &vars = member_->vars_[place][each_var_name];
size_t version = vars.size();
auto &var = vars[version];
var.version_ = version;
var.generated_op_ = op_handle;
var.name_ = each_var_name;
var.place_ = place;
op_handle->outputs_.emplace_back(&var);
}
VarHandle *ParallelExecutor::GetVarHandle(const std::string &each_var_name,
const platform::Place &place) const {
auto &var_holders = member_->vars_[place];
auto &var_holder = var_holders[each_var_name];
VarHandle *var = nullptr;
if (var_holder.empty()) {
auto &init_var = var_holder[0];
init_var.place_ = place;
init_var.name_ = each_var_name;
init_var.generated_op_ = nullptr;
init_var.version_ = 0;
var = &init_var;
} else {
var = &var_holder.rbegin()->second;
}
return var;
}
void ParallelExecutor::BCastParamsToGPUs(
const ProgramDesc &startup_program) const {
#ifdef PADDLE_WITH_CUDA
auto *main_scope = member_->local_scopes_[0];
for (auto *var_desc : startup_program.Block(0).AllVars()) {
if (var_desc->GetType() == proto::VarType::LOD_TENSOR) {
auto &main_tensor =
main_scope->FindVar(var_desc->Name())->Get<LoDTensor>();
ncclDataType_t data_type = ToNCCLDataType(main_tensor.type());
auto &dims = main_tensor.dims();
size_t numel = main_tensor.numel();
platform::dynload::ncclGroupStart();
for (size_t i = 0; i < member_->places_.size(); ++i) {
auto place = member_->places_[i];
void *buffer;
if (i == 0) {
buffer = const_cast<void *>(main_tensor.data<void>());
} else {
auto local_scope = member_->local_scopes_[i];
auto *t = local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
t->Resize(dims);
buffer = t->mutable_data(place, main_tensor.type());
}
auto &nccl_ctx = member_->GetNCCLCtx(place);
platform::dynload::ncclBcast(buffer, numel, data_type, 0, nccl_ctx.comm,
nccl_ctx.stream());
}
platform::dynload::ncclGroupEnd();
}
for (auto &stream : member_->communication_streams_) {
stream.second.ctx_->Wait();
}
}
#else
PADDLE_THROW("Not compiled with CUDA");
#endif
}
void ParallelExecutor::BuildNCCLCommunicator() const {
#ifdef PADDLE_WITH_CUDA
for (auto &place : member_->places_) {
int dev_id = boost::get<platform::CUDAPlace>(place).device;
member_->communication_streams_.emplace(
dev_id, ParallelExecutorPrivate::NCCLContext(dev_id));
}
ParallelExecutorPrivate::NCCLContext::InitNCCLContext(
member_->communication_streams_, member_->places_);
#endif
}
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
const std::string &fetched_var_name) {
bool use_event = true;
auto fetched_data = std::make_shared<FetchedData>(fetch_tensors.size());
// Version --> VarHandle
member_->exception_.reset();
std::unordered_map<VarHandleBase *, std::atomic<bool>> pending_vars;
std::unordered_map<OpHandle *, size_t> pending_ops;
std::vector<DummyVarHandle> dummy_vars;
for (auto &place_pair : member_->vars_) {
for (auto &name_pair : place_pair.second) {
for (auto &version_pair : name_pair.second) {
pending_vars[&version_pair.second] =
version_pair.second.generated_op_ == nullptr;
}
}
}
for (auto &var : member_->dep_vars_) {
pending_vars[var.get()] = var->generated_op_ == nullptr;
}
std::vector<OpHandle *> to_run;
for (auto &op : member_->ops_) {
if (op->inputs_.empty()) { // Special case, Op has no input.
to_run.emplace_back(op.get());
} else {
pending_ops.insert({op.get(), op->inputs_.size()});
}
}
std::unordered_map<std::string, std::vector<VarHandleBase *>> fetched_vars;
for (auto &fetch_var_name : fetch_tensors) {
for (auto &pair : member_->vars_) {
auto it = pair.second.find(fetch_var_name);
if (it != pair.second.end()) {
fetched_vars[fetch_var_name].push_back(&it->second.rbegin()->second);
}
}
}
std::vector<FetchOpHandle> fetch_ops;
for (size_t i = 0; i < fetch_tensors.size(); ++i) {
auto &var_name = fetch_tensors[i];
auto &vars = fetched_vars[var_name];
fetch_ops.emplace_back();
FetchOpHandle *op = &fetch_ops.back();
op->data_ = fetched_data;
op->offset_ = i;
op->local_scopes_ = &member_->local_scopes_;
for (auto &p : member_->places_) {
op->dev_ctx_[p] = member_->GetNCCLCtx(p).ctx_.get();
}
for (auto *var : vars) {
var->pending_ops_.emplace(op);
op->inputs_.emplace_back(var);
}
dummy_vars.emplace_back();
auto *var = &dummy_vars.back();
op->outputs_.emplace_back(var);
var->generated_op_ = op;
pending_vars[var] = false;
pending_ops.insert({op, op->inputs_.size()});
}
for (auto *op : to_run) {
RunOp(use_event, pending_vars, op);
}
while (!pending_vars.empty()) {
VarHandleBase *ready_var = nullptr;
for (auto &pair : pending_vars) {
if (pair.second.load(std::memory_order_acquire)) {
ready_var = pair.first;
}
}
if (ready_var == nullptr) {
// FIXME use conditional var instead of busy wait.
if (member_->exception_) {
throw * member_->exception_;
}
continue;
}
pending_vars.erase(ready_var);
to_run.clear();
for (auto *op : ready_var->pending_ops_) {
auto &deps = pending_ops[op];
--deps;
if (deps == 0) {
to_run.emplace_back(op);
}
}
for (auto *op : to_run) {
pending_ops.erase(op);
RunOp(use_event, pending_vars, op);
}
}
for (auto &p : member_->places_) {
platform::DeviceContextPool::Instance().Get(p)->Wait();
}
fetch_ops.clear();
*member_->global_scope_->Var(fetched_var_name)->GetMutable<LoDTensorArray>() =
fetched_data->tensors_;
}
void ParallelExecutor::RunOp(
bool use_event,
std::unordered_map<VarHandleBase *, std::atomic<bool>> &pending_vars,
OpHandle *op) const {
std::vector<std::atomic<bool> *> *ready_buffer =
new std::vector<std::atomic<bool> *>();
for (auto *var : op->outputs_) {
ready_buffer->emplace_back(&pending_vars[var]);
}
auto op_run = [ready_buffer, op, this, use_event] {
try {
VLOG(10) << op->DebugString();
op->Run(use_event);
for (auto *ready : *ready_buffer) {
ready->store(true, std::memory_order_release);
}
delete ready_buffer;
} catch (platform::EnforceNotMet ex) {
member_->exception_.reset(new platform::EnforceNotMet(ex));
} catch (...) {
LOG(FATAL) << "Unknown exception catched";
}
};
if (member_->pool_) {
member_->pool_->enqueue(op_run);
} else {
op_run();
}
}
} // namespace framework
} // namespace paddle