You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
241 lines
7.9 KiB
241 lines
7.9 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <algorithm>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace analysis {
|
|
|
|
// diff: similarity_norm.tmp_0, for speed: fc_4.tmp_1
|
|
static const char out_var_name[] = "reduce_sum_0.tmp_0";
|
|
|
|
// for diff: 154, for speed 111
|
|
constexpr int num_slots = 154;
|
|
|
|
struct OneSlotInBatch {
|
|
std::string name;
|
|
std::vector<std::vector<float>> data;
|
|
std::vector<int> shape;
|
|
std::vector<size_t> lod;
|
|
};
|
|
|
|
struct DataRecord {
|
|
std::vector<std::vector<OneSlotInBatch>> batched_data;
|
|
std::map<std::string, std::vector<std::vector<float>>> datasets;
|
|
size_t batch_iter{0}, num_samples; // total number of samples
|
|
|
|
DataRecord() = default;
|
|
explicit DataRecord(const std::string &path, int batch_size = 1) {
|
|
Load(path);
|
|
Prepare(batch_size);
|
|
}
|
|
|
|
void Load(const std::string &path) {
|
|
std::ifstream file(path);
|
|
std::string line;
|
|
int num_lines = 0;
|
|
while (std::getline(file, line)) {
|
|
num_lines++;
|
|
std::vector<std::string> data;
|
|
split(line, '\t', &data);
|
|
std::vector<float> slot_data;
|
|
split_to_float(data[1], ' ', &slot_data);
|
|
std::string name = data[0];
|
|
PADDLE_ENFORCE_EQ(
|
|
slot_data.size() % 11, 0UL,
|
|
paddle::platform::errors::Fatal("line %d, %s should be divisible",
|
|
num_lines, name));
|
|
datasets[name].emplace_back(std::move(slot_data));
|
|
}
|
|
num_samples = num_lines / num_slots;
|
|
PADDLE_ENFORCE_EQ(
|
|
num_samples * num_slots, static_cast<size_t>(num_lines),
|
|
paddle::platform::errors::Fatal("num samples should be divisible"));
|
|
PADDLE_ENFORCE_GT(num_samples, 0UL,
|
|
paddle::platform::errors::Fatal(
|
|
"The num of samples should be greater than 0."));
|
|
}
|
|
|
|
void Prepare(int bs) {
|
|
for (auto it = datasets.begin(); it != datasets.end(); ++it) {
|
|
PADDLE_ENFORCE_EQ(
|
|
it->second.size(), num_samples,
|
|
paddle::platform::errors::Fatal("size of each slot should be equal"));
|
|
}
|
|
size_t num_batches = num_samples / bs;
|
|
EXPECT_GT(num_batches, 0UL);
|
|
batched_data.resize(num_batches);
|
|
for (auto &one_batch : batched_data) {
|
|
one_batch.resize(datasets.size());
|
|
size_t i = 0;
|
|
for (auto it = datasets.begin(); it != datasets.end(); ++it) {
|
|
auto &slot = one_batch[i];
|
|
slot.name = it->first;
|
|
slot.data.resize(bs);
|
|
slot.lod.resize(bs + 1);
|
|
slot.lod[0] = 0;
|
|
auto &lod = slot.lod;
|
|
auto &datas = it->second;
|
|
for (int k = 0; k < bs; ++k) {
|
|
size_t id = k + batch_iter * bs;
|
|
std::copy(datas[id].begin(), datas[id].end(),
|
|
std::back_inserter(slot.data[k]));
|
|
size_t len = datas[id].size() / 11;
|
|
PADDLE_ENFORCE_EQ(
|
|
len * 11, datas[id].size(),
|
|
paddle::platform::errors::Fatal("%s %d size should be divisible",
|
|
slot.name, id));
|
|
lod[k + 1] = lod[k] + len;
|
|
}
|
|
slot.shape.assign({static_cast<int>(lod[bs]), 11});
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
const std::vector<OneSlotInBatch> &NextBatch() {
|
|
if (batch_iter >= batched_data.size() - 1) {
|
|
batch_iter = -1;
|
|
}
|
|
return batched_data[++batch_iter];
|
|
}
|
|
};
|
|
|
|
static void TensorAssignSlot(PaddleTensor *tensor, const OneSlotInBatch &slot) {
|
|
tensor->name = slot.name + "_embed";
|
|
tensor->shape = slot.shape;
|
|
tensor->dtype = PaddleDType::FLOAT32;
|
|
tensor->lod.clear();
|
|
tensor->lod.emplace_back(slot.lod);
|
|
TensorAssignData(tensor, slot.data);
|
|
}
|
|
|
|
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
|
|
const auto &one_batch = data->NextBatch();
|
|
input_slots->resize(one_batch.size());
|
|
for (size_t i = 0; i < one_batch.size(); ++i) {
|
|
auto &slot = one_batch[i];
|
|
TensorAssignSlot(&((*input_slots)[i]), slot);
|
|
}
|
|
}
|
|
|
|
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
|
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
|
std::vector<PaddleTensor> input_slots;
|
|
int epoch = FLAGS_test_all_data ? data.batched_data.size() : 1;
|
|
LOG(INFO) << "number of samples: "
|
|
<< data.batched_data.size() * FLAGS_batch_size;
|
|
for (int bid = 0; bid < epoch; ++bid) {
|
|
PrepareInputs(&input_slots, &data);
|
|
(*inputs).emplace_back(input_slots);
|
|
}
|
|
}
|
|
|
|
void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
|
|
cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
|
|
cfg->DisableGpu();
|
|
cfg->SwitchSpecifyInputNames();
|
|
cfg->SwitchIrDebug();
|
|
cfg->SetCpuMathLibraryNumThreads(FLAGS_cpu_num_threads);
|
|
if (FLAGS_zero_copy) {
|
|
cfg->SwitchUseFeedFetchOps(false);
|
|
}
|
|
if (use_mkldnn) {
|
|
cfg->EnableMKLDNN();
|
|
cfg->pass_builder()->AppendPass("fc_mkldnn_pass");
|
|
}
|
|
// Enable seqpool_concat_fuse_pass, disabled by default since it takes much
|
|
// time
|
|
cfg->pass_builder()->InsertPass(2, "seqpool_concat_fuse_pass");
|
|
}
|
|
|
|
void profile(bool use_mkldnn = false) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg, use_mkldnn);
|
|
|
|
std::vector<std::vector<PaddleTensor>> outputs;
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all, &outputs, FLAGS_num_threads);
|
|
}
|
|
|
|
TEST(Analyzer_seq_pool1, profile) { profile(); }
|
|
|
|
// Compare result of NativeConfig and AnalysisConfig
|
|
TEST(Analyzer_seq_pool1, compare) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareNativeAndAnalysis(
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
|
|
}
|
|
|
|
// Compare Deterministic result
|
|
TEST(Analyzer_seq_pool1, compare_determine) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all);
|
|
}
|
|
|
|
// Check the fuse status
|
|
TEST(Analyzer_seq_pool1, fuse_statis) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
int num_ops;
|
|
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
|
auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
|
|
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
|
ASSERT_TRUE(fuse_statis.count("seqpool_concat_fuse"));
|
|
ASSERT_TRUE(fuse_statis.count("squared_mat_sub_fuse"));
|
|
ASSERT_TRUE(fuse_statis.count("repeated_fc_relu_fuse"));
|
|
ASSERT_EQ(fuse_statis.at("fc_fuse"), 10);
|
|
EXPECT_EQ(fuse_statis.at("seqpool_concat_fuse"), 2);
|
|
EXPECT_EQ(fuse_statis.at("squared_mat_sub_fuse"), 2);
|
|
EXPECT_EQ(fuse_statis.at("repeated_fc_relu_fuse"), 2);
|
|
LOG(INFO) << "num_ops: " << num_ops;
|
|
EXPECT_EQ(num_ops, 171);
|
|
}
|
|
|
|
// Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy
|
|
TEST(Analyzer_seq_pool1, compare_zero_copy) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
AnalysisConfig cfg1;
|
|
SetConfig(&cfg1);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
std::vector<std::string> outputs_name;
|
|
outputs_name.emplace_back(out_var_name);
|
|
CompareAnalysisAndZeroCopy(reinterpret_cast<PaddlePredictor::Config *>(&cfg),
|
|
reinterpret_cast<PaddlePredictor::Config *>(&cfg1),
|
|
input_slots_all, outputs_name);
|
|
}
|
|
|
|
} // namespace analysis
|
|
} // namespace inference
|
|
} // namespace paddle
|