You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tests/api/analyzer_text_classificatio...

147 lines
4.7 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
struct DataReader {
explicit DataReader(const std::string &path)
: file(new std::ifstream(path)) {}
bool NextBatch(std::vector<PaddleTensor> *input, int batch_size) {
PADDLE_ENFORCE_EQ(batch_size, 1,
paddle::platform::errors::Fatal(
"The size of batch should be equal to 1."));
std::string line;
PaddleTensor tensor;
tensor.dtype = PaddleDType::INT64;
tensor.lod.emplace_back(std::vector<size_t>({0}));
std::vector<int64_t> data;
for (int i = 0; i < batch_size; i++) {
if (!std::getline(*file, line)) return false;
inference::split_to_int64(line, ' ', &data);
}
tensor.lod.front().push_back(data.size());
tensor.data.Resize(data.size() * sizeof(int64_t));
CHECK(tensor.data.data() != nullptr);
CHECK(data.data() != nullptr);
memcpy(tensor.data.data(), data.data(), data.size() * sizeof(int64_t));
tensor.shape.push_back(data.size());
tensor.shape.push_back(1);
input->assign({tensor});
return true;
}
std::unique_ptr<std::ifstream> file;
};
void SetConfig(AnalysisConfig *cfg) {
cfg->SetModel(FLAGS_infer_model);
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
std::vector<PaddleTensor> input_slots;
DataReader reader(FLAGS_infer_data);
int num_batches = 0;
while (reader.NextBatch(&input_slots, FLAGS_batch_size)) {
(*inputs).emplace_back(input_slots);
++num_batches;
if (!FLAGS_test_all_data) return;
}
LOG(INFO) << "total number of samples: " << num_batches * FLAGS_batch_size;
}
// Easy for profiling independently.
TEST(Analyzer_Text_Classification, profile) {
AnalysisConfig cfg;
SetConfig(&cfg);
cfg.SwitchIrDebug();
std::vector<std::vector<PaddleTensor>> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all, &outputs, FLAGS_num_threads);
if (FLAGS_num_threads == 1) {
// Get output
PADDLE_ENFORCE_GT(outputs.size(), 0,
paddle::platform::errors::Fatal(
"The size of output should be greater than 0."));
LOG(INFO) << "get outputs " << outputs.back().size();
for (auto &output : outputs.back()) {
LOG(INFO) << "output.shape: " << to_string(output.shape);
// no lod ?
CHECK_EQ(output.lod.size(), 0UL);
LOG(INFO) << "output.dtype: " << output.dtype;
std::stringstream ss;
int num_data = 1;
for (auto i : output.shape) {
num_data *= i;
}
for (int i = 0; i < num_data; i++) {
ss << static_cast<float *>(output.data.data())[i] << " ";
}
LOG(INFO) << "output.data summary: " << ss.str();
// one batch ends
}
}
}
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_Text_Classification, compare) {
AnalysisConfig cfg;
SetConfig(&cfg);
cfg.EnableMemoryOptim();
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Compare Deterministic result
TEST(Analyzer_Text_Classification, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
TEST(Analyzer_Text_Classification, compare_against_embedding_fc_lstm_fused) {
AnalysisConfig cfg;
SetConfig(&cfg);
// Enable embedding_fc_lstm_fuse_pass (disabled by default)
cfg.pass_builder()->InsertPass(2, "embedding_fc_lstm_fuse_pass");
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
} // namespace inference
} // namespace paddle