You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
3.1 KiB
96 lines
3.1 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <cuda_runtime.h>
|
|
#include <gflags/gflags.h>
|
|
#include <glog/logging.h>
|
|
#include <gtest/gtest.h>
|
|
#include <cstring>
|
|
#include <numeric>
|
|
|
|
#include "paddle/fluid/inference/tests/api/trt_test_helper.h"
|
|
|
|
namespace paddle_infer {
|
|
|
|
TEST(Predictor, use_gpu) {
|
|
LOG(INFO) << GetVersion();
|
|
UpdateDllFlag("conv_workspace_size_limit", "4000");
|
|
std::string model_dir = FLAGS_infer_model + "/model";
|
|
Config config;
|
|
config.SetModel(model_dir + "/model", model_dir + "/params");
|
|
config.EnableUseGpu(100, 0);
|
|
|
|
auto predictor = CreatePredictor(config);
|
|
auto pred_clone = predictor->Clone();
|
|
|
|
std::vector<int> in_shape = {1, 3, 318, 318};
|
|
int in_num = std::accumulate(in_shape.begin(), in_shape.end(), 1,
|
|
[](int &a, int &b) { return a * b; });
|
|
|
|
std::vector<float> input(in_num, 0);
|
|
|
|
auto input_names = predictor->GetInputNames();
|
|
auto input_t = predictor->GetInputHandle(input_names[0]);
|
|
|
|
input_t->Reshape(in_shape);
|
|
input_t->CopyFromCpu(input.data());
|
|
predictor->Run();
|
|
|
|
auto output_names = predictor->GetOutputNames();
|
|
auto output_t = predictor->GetOutputHandle(output_names[0]);
|
|
std::vector<int> output_shape = output_t->shape();
|
|
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
|
|
std::multiplies<int>());
|
|
|
|
std::vector<float> out_data;
|
|
out_data.resize(out_num);
|
|
output_t->CopyToCpu(out_data.data());
|
|
predictor->ClearIntermediateTensor();
|
|
}
|
|
|
|
TEST(PredictorPool, basic) {
|
|
LOG(INFO) << GetVersion();
|
|
UpdateDllFlag("conv_workspace_size_limit", "4000");
|
|
std::string model_dir = FLAGS_infer_model + "/model";
|
|
Config config;
|
|
config.SetModel(model_dir + "/model", model_dir + "/params");
|
|
config.EnableUseGpu(100, 0);
|
|
|
|
services::PredictorPool pred_pool(config, 4);
|
|
auto pred = pred_pool.Retrive(2);
|
|
|
|
std::vector<int> in_shape = {1, 3, 318, 318};
|
|
int in_num = std::accumulate(in_shape.begin(), in_shape.end(), 1,
|
|
[](int &a, int &b) { return a * b; });
|
|
std::vector<float> input(in_num, 0);
|
|
|
|
auto in_names = pred->GetInputNames();
|
|
auto input_t = pred->GetInputHandle(in_names[0]);
|
|
input_t->name();
|
|
input_t->Reshape(in_shape);
|
|
input_t->CopyFromCpu(input.data());
|
|
pred->Run();
|
|
auto out_names = pred->GetOutputNames();
|
|
auto output_t = pred->GetOutputHandle(out_names[0]);
|
|
auto out_type = output_t->type();
|
|
LOG(INFO) << GetNumBytesOfDataType(out_type);
|
|
if (out_type == DataType::FLOAT32) {
|
|
PlaceType place;
|
|
int size;
|
|
output_t->data<float>(&place, &size);
|
|
}
|
|
}
|
|
|
|
} // namespace paddle_infer
|