You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
7.5 KiB
182 lines
7.5 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
inline std::vector<int64_t> CorrelationOutputSize(int batch, int input_height,
|
|
int input_width, int stride1,
|
|
int stride2, int kernel_size,
|
|
int pad_size,
|
|
int max_displacement) {
|
|
std::vector<int64_t> output_shape({batch});
|
|
int kernel_radius = (kernel_size - 1) / 2;
|
|
int border_radius = kernel_radius + max_displacement;
|
|
int padded_input_height = input_height + 2 * pad_size;
|
|
int padded_input_width = input_width + 2 * pad_size;
|
|
int output_channel = ((max_displacement / stride2) * 2 + 1) *
|
|
((max_displacement / stride2) * 2 + 1);
|
|
output_shape.push_back(output_channel);
|
|
int output_height =
|
|
std::ceil(static_cast<float>(padded_input_height - 2 * border_radius) /
|
|
static_cast<float>(stride1));
|
|
int output_width =
|
|
std::ceil(static_cast<float>(padded_input_width - 2 * border_radius) /
|
|
static_cast<float>(stride1));
|
|
output_shape.push_back(output_height);
|
|
output_shape.push_back(output_width);
|
|
return output_shape;
|
|
}
|
|
|
|
class CorrelationOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Input1", "Input is a 4-D Tensor with shape [N, C, H, W]");
|
|
AddInput("Input2", "Input is a 4-D Tensor with shape [N, C, H, W]");
|
|
AddOutput("Output",
|
|
"(Tensor) The output tensor of correlation operator. "
|
|
"It has same data fromat and data type as the Input.");
|
|
AddAttr<int>("pad_size", "pad size for input1 and input2");
|
|
AddAttr<int>("kernel_size", "kernel size of input1 and input2");
|
|
AddAttr<int>("max_displacement", "max displacement of input1 and input2");
|
|
AddAttr<int>("stride1", "Input1 stride");
|
|
AddAttr<int>("stride2", "Input2 stride");
|
|
AddAttr<int>("corr_type_multiply", "correlation coefficient").SetDefault(1);
|
|
AddComment(
|
|
R"DOC(Correlation of two feature map. Only support NCHW data format.)DOC");
|
|
}
|
|
};
|
|
|
|
class CorrelationOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("Input1"), "Input", "X", "CorrelationOp");
|
|
OP_INOUT_CHECK(ctx->HasInput("Input2"), "Input", "Y", "CorrelationOp");
|
|
int stride1 = ctx->Attrs().Get<int>("stride1");
|
|
int stride2 = ctx->Attrs().Get<int>("stride2");
|
|
int max_displacement = ctx->Attrs().Get<int>("max_displacement");
|
|
int pad_size = ctx->Attrs().Get<int>("pad_size");
|
|
int kernel_size = ctx->Attrs().Get<int>("kernel_size");
|
|
|
|
auto in_dims = ctx->GetInputDim("Input1");
|
|
auto in2_dims = ctx->GetInputDim("Input2");
|
|
|
|
PADDLE_ENFORCE_EQ(in_dims.size() == 4, true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(X) of CorrelationOp must be 4 dims."
|
|
"But received dims is %d.",
|
|
in_dims.size()));
|
|
|
|
PADDLE_ENFORCE_EQ(in2_dims.size() == 4, true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Y) of CorrelationOp must be 4 dims."
|
|
"But received dims is %d.",
|
|
in2_dims.size()));
|
|
std::vector<int64_t> output_shape =
|
|
CorrelationOutputSize(in_dims[0], in_dims[2], in_dims[3], stride1,
|
|
stride2, kernel_size, pad_size, max_displacement);
|
|
ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto input_data_type =
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Input1");
|
|
PADDLE_ENFORCE_EQ(input_data_type, ctx.Input<Tensor>("Input2")->type(),
|
|
platform::errors::InvalidArgument(
|
|
"X and Y shoule have the same datatype"));
|
|
return framework::OpKernelType(input_data_type, ctx.GetPlace());
|
|
}
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string& var_name, const Tensor& tensor,
|
|
const framework::OpKernelType& expected_kernel_type) const override {
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
tensor.place(), tensor.layout());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CorrelationOpGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("correlation_grad");
|
|
op->SetInput("Input1", this->Input("Input1"));
|
|
op->SetInput("Input2", this->Input("Input2"));
|
|
op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
|
|
op->SetOutput(framework::GradVarName("Input1"), this->InputGrad("Input1"));
|
|
op->SetOutput(framework::GradVarName("Input2"), this->InputGrad("Input2"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
class CorrelationOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("Input1"), "Input", "X", "CorrelationOp");
|
|
OP_INOUT_CHECK(ctx->HasInput("Input2"), "Input", "Y", "CorrelationOp");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Output")), "Input",
|
|
"Output@GRAD", "CorrelationGradOp");
|
|
|
|
auto in1_dims = ctx->GetInputDim("Input1");
|
|
auto in2_dims = ctx->GetInputDim("Input2");
|
|
ctx->SetOutputDim(framework::GradVarName("Input1"), in1_dims);
|
|
ctx->SetOutputDim(framework::GradVarName("Input2"), in2_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Input1"), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CorrelationKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
platform::is_gpu_place(ctx.GetPlace()), true,
|
|
platform::errors::Unimplemented("Correlation only supports GPU now."));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(correlation, ops::CorrelationOp, ops::CorrelationOpMaker,
|
|
ops::CorrelationOpGradMaker<paddle::framework::OpDesc>,
|
|
ops::CorrelationOpGradMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(correlation_grad, ops::CorrelationOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(correlation, ops::CorrelationKernel<float>,
|
|
ops::CorrelationKernel<double>);
|