You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
346 lines
15 KiB
346 lines
15 KiB
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/deformable_conv_op.h"
|
|
#include <memory>
|
|
#include "paddle/fluid/operators/conv_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
class DeformableConvOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Input",
|
|
"(Tensor) The input of deformable conv op. "
|
|
"The shape of input is "
|
|
"[N, channel_in, H, W]");
|
|
AddInput("Offset",
|
|
"(Tensor) The input offset. "
|
|
"The shape of the offset is "
|
|
"[N, deformable_groups * kernel_w * kernel_h * 2, H, W");
|
|
AddInput("Mask",
|
|
"(Tensor) The input mask. "
|
|
"The shape of the mask is "
|
|
"[N, deformable_groups * kernel_w * kernel_h, H, W].");
|
|
AddInput("Filter",
|
|
"(Tensor) The Input Filter "
|
|
"The shape of the wight is "
|
|
"[num_filters, channel_in, kernel_h, kernel_w.");
|
|
AddOutput("Output",
|
|
"(Tensor) The output. "
|
|
"The shape of the output tensor is "
|
|
"[N, num_filters, out_height, out_width]].");
|
|
AddAttr<std::vector<int>>("strides",
|
|
"(vector<int> default:{1, 1}), the "
|
|
"strides(h_stride, w_stride) of "
|
|
"convolution operator.")
|
|
.SetDefault({1, 1});
|
|
AddAttr<std::vector<int>>("paddings",
|
|
"(vector<int> default:{0,0}), the "
|
|
"paddings(h_pad, w_pad) of "
|
|
"convolution operator. ")
|
|
.SetDefault({0, 0});
|
|
AddAttr<std::vector<int>>("dilations",
|
|
"(vector<int> default:{1, 1}), the "
|
|
"dilations(h_dilation, w_dilation) of "
|
|
"convolution operator.")
|
|
.SetDefault({1, 1});
|
|
AddAttr<int>(
|
|
"groups",
|
|
"(int default:1), the groups number of the convolution operator. "
|
|
"According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
|
|
"when group=2, the first half of the filters is only connected to the "
|
|
"first half of the input channels, while the second half of the "
|
|
"filters "
|
|
"is only connected to the second half of the input channels.")
|
|
.SetDefault(1);
|
|
AddAttr<int>("deformable_groups",
|
|
"(int default:1), the number of the deformable groups.")
|
|
.SetDefault(1);
|
|
AddAttr<int>("im2col_step",
|
|
"im2col maximum number of image per computation")
|
|
.SetDefault(64);
|
|
AddComment(R"DOC(
|
|
**Deformable Convolution Operator**
|
|
|
|
Compute 2-D deformable convolution on 4-D input.
|
|
|
|
Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
|
|
|
|
$$
|
|
y(p) = \\sum_{k=1}^{K}{w_k * x(p + p_k + \\Delta p_k) * \\Delta m_k}
|
|
$$
|
|
|
|
Where $$\\Delta p_k$$ and $$\Delta m_k$$ are the learnable offset and modulation scalar for the k-th location, respectively.
|
|
|
|
Refer to 'Deformable ConvNets v2: More Deformable, Better Results
|
|
'<https://arxiv.org/abs/1811.11168v2>
|
|
|
|
Example:
|
|
Input:
|
|
Input shape: $(N, C_{in}, H_{in}, W_{in})$
|
|
Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
|
|
Offset shape: $(N, 2 * deformable_groups, * H_f * W_f, H_{out}, W_{out})$
|
|
Mask shape: $(N, deformable_groups * H_f * W_f, H_{out}, W_{out})$
|
|
Output:
|
|
Output shape: $(N, C_{out}, H_{out}, W_{out})$
|
|
where $H_{out}, W_{out}$ must be equal to $H_{in}, W_{in}$ respectively.
|
|
Where
|
|
$$
|
|
H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
|
|
W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
|
|
$$
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class DeformableConvOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "deformable_conv");
|
|
OP_INOUT_CHECK(ctx->HasInput("Offset"), "Input", "Offset",
|
|
"deformable_conv)");
|
|
OP_INOUT_CHECK(ctx->HasInput("Mask"), "Input", "Mask", "deformable_conv");
|
|
OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter",
|
|
"deformable_conv");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output",
|
|
"deformable_conv");
|
|
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
auto filter_dims = ctx->GetInputDim("Filter");
|
|
auto offset_dims = ctx->GetInputDim("Offset");
|
|
auto mask_dims = ctx->GetInputDim("Mask");
|
|
|
|
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
|
std::vector<int> dilations =
|
|
ctx->Attrs().Get<std::vector<int>>("dilations");
|
|
int groups = ctx->Attrs().Get<int>("groups");
|
|
int deformable_groups = ctx->Attrs().Get<int>("deformable_groups");
|
|
int im2col_step = ctx->Attrs().Get<int>("im2col_step");
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
in_dims.size(), 4,
|
|
platform::errors::InvalidArgument(
|
|
"Conv input should be 4-D tensor, get %u", in_dims.size()));
|
|
PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
|
|
platform::errors::InvalidArgument(
|
|
"Conv input dimension and filter dimension should be "
|
|
"the same. The difference is [%d]: [%d]",
|
|
in_dims.size(), filter_dims.size()));
|
|
PADDLE_ENFORCE_EQ(in_dims.size() - strides.size(), 2U,
|
|
platform::errors::InvalidArgument(
|
|
"Conv input dimension and strides "
|
|
"dimension should be consistent. But received input "
|
|
"dimension:[%d], strides dimension:[%d]",
|
|
in_dims.size(), strides.size()));
|
|
PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
|
|
platform::errors::InvalidArgument(
|
|
"Conv paddings dimension and Conv strides dimension "
|
|
"should be the same. The difference is [%d]: [%d]",
|
|
paddings.size(), strides.size()));
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
in_dims[1], filter_dims[1] * groups,
|
|
platform::errors::InvalidArgument(
|
|
"The number of input channels should be equal to filter "
|
|
"channels * groups. The difference is [%d]: [%d]",
|
|
in_dims[1], filter_dims[1] * groups));
|
|
PADDLE_ENFORCE_EQ(
|
|
filter_dims[0] % groups, 0,
|
|
platform::errors::InvalidArgument(
|
|
"The number of output channels should be divided by groups. But "
|
|
"received output channels:[%d], groups:[%d]",
|
|
filter_dims[0], groups));
|
|
PADDLE_ENFORCE_EQ(
|
|
filter_dims[0] % deformable_groups, 0,
|
|
platform::errors::InvalidArgument(
|
|
"The number of output channels should be "
|
|
"divided by deformable groups. The difference is [%d]: [%d]",
|
|
filter_dims[0] % groups, 0));
|
|
|
|
if (in_dims[0] > im2col_step) {
|
|
PADDLE_ENFORCE_EQ(
|
|
in_dims[0] % im2col_step, 0U,
|
|
platform::errors::InvalidArgument(
|
|
"Input batchsize must be smaller than or divide im2col_step. But "
|
|
"received Input batchsize:[%d], im2col_step:[%d]",
|
|
in_dims[0], im2col_step));
|
|
}
|
|
|
|
for (size_t i = 0; i < strides.size(); ++i) {
|
|
PADDLE_ENFORCE_GT(strides[i], 0U, platform::errors::InvalidArgument(
|
|
"stride %d size incorrect", i));
|
|
}
|
|
for (size_t i = 0; i < dilations.size(); ++i) {
|
|
PADDLE_ENFORCE_GT(dilations[i], 0U, platform::errors::InvalidArgument(
|
|
"dilation %d size incorrect", i));
|
|
}
|
|
|
|
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
|
|
for (size_t i = 0; i < strides.size(); ++i) {
|
|
if ((!ctx->IsRuntime()) &&
|
|
(in_dims[i + 2] <= 0 || filter_dims[i + 2] <= 0)) {
|
|
output_shape.push_back(-1);
|
|
} else {
|
|
output_shape.push_back(ConvOutputSize(in_dims[i + 2],
|
|
filter_dims[i + 2], dilations[i],
|
|
paddings[i], strides[i]));
|
|
}
|
|
}
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
output_shape[1] % deformable_groups, 0U,
|
|
platform::errors::InvalidArgument(
|
|
"output num_filter must divide deformable group size. But received "
|
|
"output num_filter:[%d], deformable group size:[%d]",
|
|
output_shape[1], deformable_groups));
|
|
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE_EQ(output_shape[2], offset_dims[2],
|
|
platform::errors::InvalidArgument(
|
|
"output height must equal to offset map height. "
|
|
"The difference is [%d]: [%d]",
|
|
output_shape[2], offset_dims[2]));
|
|
PADDLE_ENFORCE_EQ(output_shape[3], offset_dims[3],
|
|
platform::errors::InvalidArgument(
|
|
"output width must equal to offset map width. The "
|
|
"difference is [%d]: [%d]",
|
|
output_shape[3], offset_dims[3]));
|
|
|
|
PADDLE_ENFORCE_EQ(offset_dims[1] % (filter_dims[2] * filter_dims[3]), 0U,
|
|
platform::errors::InvalidArgument(
|
|
"offset filter must divide deformable group size. "
|
|
"But received [%d]: [%d]",
|
|
offset_dims[1], filter_dims[2] * filter_dims[3]));
|
|
PADDLE_ENFORCE_EQ(
|
|
offset_dims[1] / (2 * filter_dims[2] * filter_dims[3]),
|
|
deformable_groups,
|
|
platform::errors::InvalidArgument(
|
|
"offset filter must divide deformable group size. But received "
|
|
"[%d]: [%d]",
|
|
offset_dims[1] / (2 * filter_dims[2] * filter_dims[3]),
|
|
deformable_groups));
|
|
PADDLE_ENFORCE_EQ(output_shape[2], mask_dims[2],
|
|
platform::errors::InvalidArgument(
|
|
"output height must equal to mask map height. The "
|
|
"difference is [%d] vs [%d]",
|
|
output_shape[2], mask_dims[2]));
|
|
PADDLE_ENFORCE_EQ(output_shape[3], mask_dims[3],
|
|
platform::errors::InvalidArgument(
|
|
"output width must equal to mask map width. The "
|
|
"difference is [%d] vs [%d]",
|
|
output_shape[3], mask_dims[3]));
|
|
|
|
PADDLE_ENFORCE_EQ(mask_dims[1] % (filter_dims[2] * filter_dims[3]), 0U,
|
|
platform::errors::InvalidArgument(
|
|
"mask filter must divide deformable group size. "
|
|
"But received [%d]: [%d]",
|
|
mask_dims[1], filter_dims[2] * filter_dims[3]));
|
|
PADDLE_ENFORCE_EQ(mask_dims[1] / (filter_dims[2] * filter_dims[3]),
|
|
deformable_groups,
|
|
platform::errors::InvalidArgument(
|
|
"mask filter must divide deformable group size. "
|
|
"But received [%d]: [%d]",
|
|
mask_dims[1] / (filter_dims[2] * filter_dims[3]),
|
|
deformable_groups));
|
|
}
|
|
|
|
ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class DeformableConvGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("deformable_conv_grad");
|
|
op->SetInput("Input", this->Input("Input"));
|
|
op->SetInput("Filter", this->Input("Filter"));
|
|
op->SetInput("Offset", this->Input("Offset"));
|
|
op->SetInput("Mask", this->Input("Mask"));
|
|
op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
|
|
|
|
op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
|
|
op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
|
|
op->SetOutput(framework::GradVarName("Offset"), this->InputGrad("Offset"));
|
|
op->SetOutput(framework::GradVarName("Mask"), this->InputGrad("Mask"));
|
|
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
class DeformableConvGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
auto filter_dims = ctx->GetInputDim("Filter");
|
|
auto offset_dims = ctx->GetInputDim("Offset");
|
|
auto mask_dims = ctx->GetInputDim("Mask");
|
|
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Output")), "Input",
|
|
"Output@Grad", "deformable_conv_grad");
|
|
if (ctx->HasOutput(framework::GradVarName("Input"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("Offset"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Offset"), offset_dims);
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("Mask"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Mask"), mask_dims);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(deformable_conv, ops::DeformableConvOp,
|
|
ops::DeformableConvOpMaker,
|
|
ops::DeformableConvGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::DeformableConvGradOpMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(deformable_conv_grad, ops::DeformableConvGradOp);
|
|
|
|
REGISTER_OP_CPU_KERNEL(deformable_conv, ops::DeformableConvCPUKernel<float>,
|
|
ops::DeformableConvCPUKernel<double>);
|
|
REGISTER_OP_CPU_KERNEL(deformable_conv_grad,
|
|
ops::DeformableConvGradCPUKernel<float>,
|
|
ops::DeformableConvGradCPUKernel<double>);
|