You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/detection/collect_fpn_proposals_op.h

194 lines
6.9 KiB

/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.*/
#pragma once
#include <algorithm>
#include <cmath>
#include <cstring>
#include <numeric>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
const int kBoxDim = 4;
template <typename T>
struct ScoreWithID {
T score;
int batch_id;
int index;
int level;
ScoreWithID() {
batch_id = -1;
index = -1;
level = -1;
}
ScoreWithID(T score_, int batch_id_, int index_, int level_) {
score = score_;
batch_id = batch_id_;
index = index_;
level = level_;
}
};
template <typename T>
static inline bool CompareByScore(ScoreWithID<T> a, ScoreWithID<T> b) {
return a.score >= b.score;
}
template <typename T>
static inline bool CompareByBatchid(ScoreWithID<T> a, ScoreWithID<T> b) {
return a.batch_id < b.batch_id;
}
template <typename T>
class CollectFpnProposalsOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto multi_layer_rois =
context.MultiInput<paddle::framework::LoDTensor>("MultiLevelRois");
auto multi_layer_scores =
context.MultiInput<paddle::framework::LoDTensor>("MultiLevelScores");
auto multi_rois_num = context.MultiInput<Tensor>("MultiLevelRoIsNum");
int num_size = multi_rois_num.size();
auto* fpn_rois = context.Output<paddle::framework::LoDTensor>("FpnRois");
int post_nms_topN = context.Attr<int>("post_nms_topN");
PADDLE_ENFORCE_GE(post_nms_topN, 0UL,
platform::errors::InvalidArgument(
"The parameter post_nms_topN must be "
"a positive integer. But received post_nms_topN = %d",
post_nms_topN));
// assert that the length of Rois and scores are same
PADDLE_ENFORCE_EQ(
multi_layer_rois.size(), multi_layer_scores.size(),
platform::errors::InvalidArgument(
"The number of RoIs and Scores should"
" be the same. But received number of RoIs is %d, number of Scores "
"is %d",
multi_layer_rois.size(), multi_layer_scores.size()));
// Check if the lod information of two LoDTensor is same
const int num_fpn_level = multi_layer_rois.size();
std::vector<int> integral_of_all_rois(num_fpn_level + 1, 0);
for (int i = 0; i < num_fpn_level; ++i) {
int all_rois = 0;
if (num_size == 0) {
auto cur_rois_lod = multi_layer_rois[i]->lod().back();
all_rois = cur_rois_lod[cur_rois_lod.size() - 1];
} else {
const int* cur_rois_num = multi_rois_num[i]->data<int>();
all_rois = std::accumulate(
cur_rois_num, cur_rois_num + multi_rois_num[i]->numel(), 0);
}
integral_of_all_rois[i + 1] = integral_of_all_rois[i] + all_rois;
}
const int batch_size = (num_size == 0)
? multi_layer_rois[0]->lod().back().size() - 1
: multi_rois_num[0]->numel();
// concatenate all fpn rois scores into a list
// create a vector to store all scores
std::vector<ScoreWithID<T>> scores_of_all_rois(
integral_of_all_rois[num_fpn_level], ScoreWithID<T>());
for (int i = 0; i < num_fpn_level; ++i) {
const T* cur_level_scores = multi_layer_scores[i]->data<T>();
int cur_level_num = integral_of_all_rois[i + 1] - integral_of_all_rois[i];
int cur_batch_id = 0;
int pre_num = 0;
for (int j = 0; j < cur_level_num; ++j) {
if (num_size == 0) {
auto cur_scores_lod = multi_layer_scores[i]->lod().back();
if (static_cast<size_t>(j) >= cur_scores_lod[cur_batch_id + 1]) {
cur_batch_id++;
}
} else {
const int* rois_num_data = multi_rois_num[i]->data<int>();
if (j >= pre_num + rois_num_data[cur_batch_id]) {
pre_num += rois_num_data[cur_batch_id];
cur_batch_id++;
}
}
int cur_index = j + integral_of_all_rois[i];
scores_of_all_rois[cur_index].score = cur_level_scores[j];
scores_of_all_rois[cur_index].index = j;
scores_of_all_rois[cur_index].level = i;
scores_of_all_rois[cur_index].batch_id = cur_batch_id;
}
}
// keep top post_nms_topN rois
// sort the rois by the score
if (post_nms_topN > integral_of_all_rois[num_fpn_level]) {
post_nms_topN = integral_of_all_rois[num_fpn_level];
}
std::stable_sort(scores_of_all_rois.begin(), scores_of_all_rois.end(),
CompareByScore<T>);
scores_of_all_rois.resize(post_nms_topN);
// sort by batch id
std::stable_sort(scores_of_all_rois.begin(), scores_of_all_rois.end(),
CompareByBatchid<T>);
// create a pointer array
std::vector<const T*> multi_fpn_rois_data(num_fpn_level);
for (int i = 0; i < num_fpn_level; ++i) {
multi_fpn_rois_data[i] = multi_layer_rois[i]->data<T>();
}
// initialize the outputs
fpn_rois->mutable_data<T>({post_nms_topN, kBoxDim}, context.GetPlace());
T* fpn_rois_data = fpn_rois->data<T>();
std::vector<size_t> lod0(1, 0);
int cur_batch_id = 0;
std::vector<int64_t> num_per_batch;
int pre_idx = 0;
int cur_num = 0;
for (int i = 0; i < post_nms_topN; ++i) {
int cur_fpn_level = scores_of_all_rois[i].level;
int cur_level_index = scores_of_all_rois[i].index;
memcpy(fpn_rois_data,
multi_fpn_rois_data[cur_fpn_level] + cur_level_index * kBoxDim,
kBoxDim * sizeof(T));
fpn_rois_data += kBoxDim;
if (scores_of_all_rois[i].batch_id != cur_batch_id) {
cur_batch_id = scores_of_all_rois[i].batch_id;
lod0.emplace_back(i);
cur_num = i - pre_idx;
pre_idx = i;
num_per_batch.emplace_back(cur_num);
}
}
num_per_batch.emplace_back(post_nms_topN - pre_idx);
if (context.HasOutput("RoisNum")) {
auto* rois_num = context.Output<Tensor>("RoisNum");
int* rois_num_data =
rois_num->mutable_data<int>({batch_size}, context.GetPlace());
for (int i = 0; i < batch_size; i++) {
rois_num_data[i] = num_per_batch[i];
}
}
lod0.emplace_back(post_nms_topN);
framework::LoD lod;
lod.emplace_back(lod0);
fpn_rois->set_lod(lod);
}
};
} // namespace operators
} // namespace paddle