You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
486 lines
17 KiB
486 lines
17 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <paddle/fluid/memory/allocation/allocator.h>
|
|
#include <stdio.h>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "cub/cub.cuh"
|
|
#include "paddle/fluid/framework/mixed_vector.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/memory/memory.h"
|
|
#include "paddle/fluid/operators/gather.cu.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/platform/for_range.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
namespace {
|
|
|
|
#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
|
|
|
|
int const kThreadsPerBlock = sizeof(uint64_t) * 8;
|
|
|
|
static const double kBBoxClipDefault = std::log(1000.0 / 16.0);
|
|
|
|
struct RangeInitFunctor {
|
|
int start_;
|
|
int delta_;
|
|
int *out_;
|
|
__device__ void operator()(size_t i) { out_[i] = start_ + i * delta_; }
|
|
};
|
|
|
|
template <typename T>
|
|
static void SortDescending(const platform::CUDADeviceContext &ctx,
|
|
const Tensor &value, Tensor *value_out,
|
|
Tensor *index_out) {
|
|
int num = static_cast<int>(value.numel());
|
|
Tensor index_in_t;
|
|
int *idx_in = index_in_t.mutable_data<int>({num}, ctx.GetPlace());
|
|
platform::ForRange<platform::CUDADeviceContext> for_range(ctx, num);
|
|
for_range(RangeInitFunctor{0, 1, idx_in});
|
|
|
|
int *idx_out = index_out->mutable_data<int>({num}, ctx.GetPlace());
|
|
|
|
const T *keys_in = value.data<T>();
|
|
T *keys_out = value_out->mutable_data<T>({num}, ctx.GetPlace());
|
|
|
|
// Determine temporary device storage requirements
|
|
size_t temp_storage_bytes = 0;
|
|
cub::DeviceRadixSort::SortPairsDescending<T, int>(
|
|
nullptr, temp_storage_bytes, keys_in, keys_out, idx_in, idx_out, num);
|
|
// Allocate temporary storage
|
|
auto place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
|
|
auto d_temp_storage = memory::Alloc(place, temp_storage_bytes);
|
|
|
|
// Run sorting operation
|
|
cub::DeviceRadixSort::SortPairsDescending<T, int>(
|
|
d_temp_storage->ptr(), temp_storage_bytes, keys_in, keys_out, idx_in,
|
|
idx_out, num);
|
|
}
|
|
|
|
template <typename T>
|
|
struct BoxDecodeAndClipFunctor {
|
|
const T *anchor;
|
|
const T *deltas;
|
|
const T *var;
|
|
const int *index;
|
|
const T *im_info;
|
|
|
|
T *proposals;
|
|
|
|
BoxDecodeAndClipFunctor(const T *anchor, const T *deltas, const T *var,
|
|
const int *index, const T *im_info, T *proposals)
|
|
: anchor(anchor),
|
|
deltas(deltas),
|
|
var(var),
|
|
index(index),
|
|
im_info(im_info),
|
|
proposals(proposals) {}
|
|
|
|
T bbox_clip_default{static_cast<T>(kBBoxClipDefault)};
|
|
|
|
__device__ void operator()(size_t i) {
|
|
int k = index[i] * 4;
|
|
T axmin = anchor[k];
|
|
T aymin = anchor[k + 1];
|
|
T axmax = anchor[k + 2];
|
|
T aymax = anchor[k + 3];
|
|
|
|
T w = axmax - axmin + 1.0;
|
|
T h = aymax - aymin + 1.0;
|
|
T cx = axmin + 0.5 * w;
|
|
T cy = aymin + 0.5 * h;
|
|
|
|
T dxmin = deltas[k];
|
|
T dymin = deltas[k + 1];
|
|
T dxmax = deltas[k + 2];
|
|
T dymax = deltas[k + 3];
|
|
|
|
T d_cx, d_cy, d_w, d_h;
|
|
if (var) {
|
|
d_cx = cx + dxmin * w * var[k];
|
|
d_cy = cy + dymin * h * var[k + 1];
|
|
d_w = exp(Min(dxmax * var[k + 2], bbox_clip_default)) * w;
|
|
d_h = exp(Min(dymax * var[k + 3], bbox_clip_default)) * h;
|
|
} else {
|
|
d_cx = cx + dxmin * w;
|
|
d_cy = cy + dymin * h;
|
|
d_w = exp(Min(dxmax, bbox_clip_default)) * w;
|
|
d_h = exp(Min(dymax, bbox_clip_default)) * h;
|
|
}
|
|
|
|
T oxmin = d_cx - d_w * 0.5;
|
|
T oymin = d_cy - d_h * 0.5;
|
|
T oxmax = d_cx + d_w * 0.5 - 1.;
|
|
T oymax = d_cy + d_h * 0.5 - 1.;
|
|
|
|
proposals[i * 4] = Max(Min(oxmin, im_info[1] - 1.), 0.);
|
|
proposals[i * 4 + 1] = Max(Min(oymin, im_info[0] - 1.), 0.);
|
|
proposals[i * 4 + 2] = Max(Min(oxmax, im_info[1] - 1.), 0.);
|
|
proposals[i * 4 + 3] = Max(Min(oymax, im_info[0] - 1.), 0.);
|
|
}
|
|
|
|
__device__ __forceinline__ T Min(T a, T b) const { return a > b ? b : a; }
|
|
|
|
__device__ __forceinline__ T Max(T a, T b) const { return a > b ? a : b; }
|
|
};
|
|
|
|
template <typename T, int BlockSize>
|
|
static __global__ void FilterBBoxes(const T *bboxes, const T *im_info,
|
|
const T min_size, const int num,
|
|
int *keep_num, int *keep) {
|
|
T im_h = im_info[0];
|
|
T im_w = im_info[1];
|
|
T im_scale = im_info[2];
|
|
|
|
int cnt = 0;
|
|
__shared__ int keep_index[BlockSize];
|
|
|
|
CUDA_KERNEL_LOOP(i, num) {
|
|
keep_index[threadIdx.x] = -1;
|
|
__syncthreads();
|
|
|
|
int k = i * 4;
|
|
T xmin = bboxes[k];
|
|
T ymin = bboxes[k + 1];
|
|
T xmax = bboxes[k + 2];
|
|
T ymax = bboxes[k + 3];
|
|
|
|
T w = xmax - xmin + 1.0;
|
|
T h = ymax - ymin + 1.0;
|
|
T cx = xmin + w / 2.;
|
|
T cy = ymin + h / 2.;
|
|
|
|
T w_s = (xmax - xmin) / im_scale + 1.;
|
|
T h_s = (ymax - ymin) / im_scale + 1.;
|
|
|
|
if (w_s >= min_size && h_s >= min_size && cx <= im_w && cy <= im_h) {
|
|
keep_index[threadIdx.x] = i;
|
|
}
|
|
__syncthreads();
|
|
if (threadIdx.x == 0) {
|
|
int size = (num - i) < BlockSize ? num - i : BlockSize;
|
|
for (int j = 0; j < size; ++j) {
|
|
if (keep_index[j] > -1) {
|
|
keep[cnt++] = keep_index[j];
|
|
}
|
|
}
|
|
}
|
|
__syncthreads();
|
|
}
|
|
if (threadIdx.x == 0) {
|
|
keep_num[0] = cnt;
|
|
}
|
|
}
|
|
|
|
static __device__ inline float IoU(const float *a, const float *b) {
|
|
float left = max(a[0], b[0]), right = min(a[2], b[2]);
|
|
float top = max(a[1], b[1]), bottom = min(a[3], b[3]);
|
|
float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f);
|
|
float inter_s = width * height;
|
|
float s_a = (a[2] - a[0] + 1) * (a[3] - a[1] + 1);
|
|
float s_b = (b[2] - b[0] + 1) * (b[3] - b[1] + 1);
|
|
return inter_s / (s_a + s_b - inter_s);
|
|
}
|
|
|
|
static __global__ void NMSKernel(const int n_boxes,
|
|
const float nms_overlap_thresh,
|
|
const float *dev_boxes, uint64_t *dev_mask) {
|
|
const int row_start = blockIdx.y;
|
|
const int col_start = blockIdx.x;
|
|
|
|
const int row_size =
|
|
min(n_boxes - row_start * kThreadsPerBlock, kThreadsPerBlock);
|
|
const int col_size =
|
|
min(n_boxes - col_start * kThreadsPerBlock, kThreadsPerBlock);
|
|
|
|
__shared__ float block_boxes[kThreadsPerBlock * 4];
|
|
if (threadIdx.x < col_size) {
|
|
block_boxes[threadIdx.x * 4 + 0] =
|
|
dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 0];
|
|
block_boxes[threadIdx.x * 4 + 1] =
|
|
dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 1];
|
|
block_boxes[threadIdx.x * 4 + 2] =
|
|
dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 2];
|
|
block_boxes[threadIdx.x * 4 + 3] =
|
|
dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 3];
|
|
}
|
|
__syncthreads();
|
|
|
|
if (threadIdx.x < row_size) {
|
|
const int cur_box_idx = kThreadsPerBlock * row_start + threadIdx.x;
|
|
const float *cur_box = dev_boxes + cur_box_idx * 4;
|
|
int i = 0;
|
|
uint64_t t = 0;
|
|
int start = 0;
|
|
if (row_start == col_start) {
|
|
start = threadIdx.x + 1;
|
|
}
|
|
for (i = start; i < col_size; i++) {
|
|
if (IoU(cur_box, block_boxes + i * 4) > nms_overlap_thresh) {
|
|
t |= 1ULL << i;
|
|
}
|
|
}
|
|
const int col_blocks = DIVUP(n_boxes, kThreadsPerBlock);
|
|
dev_mask[cur_box_idx * col_blocks + col_start] = t;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void NMS(const platform::CUDADeviceContext &ctx, const Tensor &proposals,
|
|
const Tensor &sorted_indices, const T nms_threshold,
|
|
Tensor *keep_out) {
|
|
int boxes_num = proposals.dims()[0];
|
|
PADDLE_ENFORCE_EQ(boxes_num, sorted_indices.dims()[0]);
|
|
|
|
const int col_blocks = DIVUP(boxes_num, kThreadsPerBlock);
|
|
dim3 blocks(DIVUP(boxes_num, kThreadsPerBlock),
|
|
DIVUP(boxes_num, kThreadsPerBlock));
|
|
dim3 threads(kThreadsPerBlock);
|
|
|
|
const T *boxes = proposals.data<T>();
|
|
auto place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
|
|
framework::Vector<uint64_t> mask(boxes_num * col_blocks);
|
|
NMSKernel<<<blocks, threads>>>(boxes_num, nms_threshold, boxes,
|
|
mask.CUDAMutableData(BOOST_GET_CONST(
|
|
platform::CUDAPlace, ctx.GetPlace())));
|
|
|
|
std::vector<uint64_t> remv(col_blocks);
|
|
memset(&remv[0], 0, sizeof(uint64_t) * col_blocks);
|
|
|
|
std::vector<int> keep_vec;
|
|
int num_to_keep = 0;
|
|
for (int i = 0; i < boxes_num; i++) {
|
|
int nblock = i / kThreadsPerBlock;
|
|
int inblock = i % kThreadsPerBlock;
|
|
|
|
if (!(remv[nblock] & (1ULL << inblock))) {
|
|
++num_to_keep;
|
|
keep_vec.push_back(i);
|
|
uint64_t *p = &mask[0] + i * col_blocks;
|
|
for (int j = nblock; j < col_blocks; j++) {
|
|
remv[j] |= p[j];
|
|
}
|
|
}
|
|
}
|
|
int *keep = keep_out->mutable_data<int>({num_to_keep}, ctx.GetPlace());
|
|
memory::Copy(place, keep, platform::CPUPlace(), keep_vec.data(),
|
|
sizeof(int) * num_to_keep, ctx.stream());
|
|
ctx.Wait();
|
|
}
|
|
|
|
template <typename T>
|
|
static std::pair<Tensor, Tensor> ProposalForOneImage(
|
|
const platform::CUDADeviceContext &ctx, const Tensor &im_info,
|
|
const Tensor &anchors, const Tensor &variances,
|
|
const Tensor &bbox_deltas, // [M, 4]
|
|
const Tensor &scores, // [N, 1]
|
|
int pre_nms_top_n, int post_nms_top_n, float nms_thresh, float min_size,
|
|
float eta) {
|
|
// 1. pre nms
|
|
Tensor scores_sort, index_sort;
|
|
SortDescending<T>(ctx, scores, &scores_sort, &index_sort);
|
|
int num = scores.numel();
|
|
int pre_nms_num = (pre_nms_top_n <= 0 || pre_nms_top_n > num) ? scores.numel()
|
|
: pre_nms_top_n;
|
|
scores_sort.Resize({pre_nms_num, 1});
|
|
index_sort.Resize({pre_nms_num, 1});
|
|
|
|
// 2. box decode and clipping
|
|
Tensor proposals;
|
|
proposals.mutable_data<T>({pre_nms_num, 4}, ctx.GetPlace());
|
|
|
|
{
|
|
platform::ForRange<platform::CUDADeviceContext> for_range(ctx, pre_nms_num);
|
|
for_range(BoxDecodeAndClipFunctor<T>{
|
|
anchors.data<T>(), bbox_deltas.data<T>(), variances.data<T>(),
|
|
index_sort.data<int>(), im_info.data<T>(), proposals.data<T>()});
|
|
}
|
|
|
|
// 3. filter
|
|
Tensor keep_index, keep_num_t;
|
|
keep_index.mutable_data<int>({pre_nms_num}, ctx.GetPlace());
|
|
keep_num_t.mutable_data<int>({1}, ctx.GetPlace());
|
|
min_size = std::max(min_size, 1.0f);
|
|
auto stream = ctx.stream();
|
|
FilterBBoxes<T, 512><<<1, 512, 0, stream>>>(
|
|
proposals.data<T>(), im_info.data<T>(), min_size, pre_nms_num,
|
|
keep_num_t.data<int>(), keep_index.data<int>());
|
|
int keep_num;
|
|
const auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
|
|
memory::Copy(platform::CPUPlace(), &keep_num, gpu_place,
|
|
keep_num_t.data<int>(), sizeof(int), ctx.stream());
|
|
ctx.Wait();
|
|
keep_index.Resize({keep_num});
|
|
|
|
Tensor scores_filter, proposals_filter;
|
|
// Handle the case when there is no keep index left
|
|
if (keep_num == 0) {
|
|
math::SetConstant<platform::CUDADeviceContext, T> set_zero;
|
|
proposals_filter.mutable_data<T>({1, 4}, ctx.GetPlace());
|
|
scores_filter.mutable_data<T>({1, 1}, ctx.GetPlace());
|
|
set_zero(ctx, &proposals_filter, static_cast<T>(0));
|
|
set_zero(ctx, &scores_filter, static_cast<T>(0));
|
|
return std::make_pair(proposals_filter, scores_filter);
|
|
}
|
|
proposals_filter.mutable_data<T>({keep_num, 4}, ctx.GetPlace());
|
|
scores_filter.mutable_data<T>({keep_num, 1}, ctx.GetPlace());
|
|
GPUGather<T>(ctx, proposals, keep_index, &proposals_filter);
|
|
GPUGather<T>(ctx, scores_sort, keep_index, &scores_filter);
|
|
|
|
if (nms_thresh <= 0) {
|
|
return std::make_pair(proposals_filter, scores_filter);
|
|
}
|
|
|
|
// 4. nms
|
|
Tensor keep_nms;
|
|
NMS<T>(ctx, proposals_filter, keep_index, nms_thresh, &keep_nms);
|
|
if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
|
|
keep_nms.Resize({post_nms_top_n});
|
|
}
|
|
|
|
Tensor scores_nms, proposals_nms;
|
|
proposals_nms.mutable_data<T>({keep_nms.numel(), 4}, ctx.GetPlace());
|
|
scores_nms.mutable_data<T>({keep_nms.numel(), 1}, ctx.GetPlace());
|
|
GPUGather<T>(ctx, proposals_filter, keep_nms, &proposals_nms);
|
|
GPUGather<T>(ctx, scores_filter, keep_nms, &scores_nms);
|
|
|
|
return std::make_pair(proposals_nms, scores_nms);
|
|
}
|
|
} // namespace
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class CUDAGenerateProposalsKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
auto *scores = context.Input<Tensor>("Scores");
|
|
auto *bbox_deltas = context.Input<Tensor>("BboxDeltas");
|
|
auto *im_info = context.Input<Tensor>("ImInfo");
|
|
auto anchors = GET_DATA_SAFELY(context.Input<Tensor>("Anchors"), "Input",
|
|
"Anchors", "GenerateProposals");
|
|
auto variances = GET_DATA_SAFELY(context.Input<Tensor>("Variances"),
|
|
"Input", "Variances", "GenerateProposals");
|
|
|
|
auto *rpn_rois = context.Output<LoDTensor>("RpnRois");
|
|
auto *rpn_roi_probs = context.Output<LoDTensor>("RpnRoiProbs");
|
|
|
|
int pre_nms_top_n = context.Attr<int>("pre_nms_topN");
|
|
int post_nms_top_n = context.Attr<int>("post_nms_topN");
|
|
float nms_thresh = context.Attr<float>("nms_thresh");
|
|
float min_size = context.Attr<float>("min_size");
|
|
float eta = context.Attr<float>("eta");
|
|
PADDLE_ENFORCE_GE(eta, 1.,
|
|
platform::errors::InvalidArgument(
|
|
"Not support adaptive NMS. The attribute 'eta' "
|
|
"should not less than 1. But received eta=[%d]",
|
|
eta));
|
|
|
|
auto &dev_ctx = context.template device_context<DeviceContext>();
|
|
|
|
auto scores_dim = scores->dims();
|
|
int64_t num = scores_dim[0];
|
|
int64_t c_score = scores_dim[1];
|
|
int64_t h_score = scores_dim[2];
|
|
int64_t w_score = scores_dim[3];
|
|
|
|
auto bbox_dim = bbox_deltas->dims();
|
|
int64_t c_bbox = bbox_dim[1];
|
|
int64_t h_bbox = bbox_dim[2];
|
|
int64_t w_bbox = bbox_dim[3];
|
|
|
|
Tensor bbox_deltas_swap, scores_swap;
|
|
bbox_deltas_swap.mutable_data<T>({num, h_bbox, w_bbox, c_bbox},
|
|
dev_ctx.GetPlace());
|
|
scores_swap.mutable_data<T>({num, h_score, w_score, c_score},
|
|
dev_ctx.GetPlace());
|
|
|
|
math::Transpose<DeviceContext, T, 4> trans;
|
|
std::vector<int> axis = {0, 2, 3, 1};
|
|
trans(dev_ctx, *bbox_deltas, &bbox_deltas_swap, axis);
|
|
trans(dev_ctx, *scores, &scores_swap, axis);
|
|
|
|
anchors.Resize({anchors.numel() / 4, 4});
|
|
variances.Resize({variances.numel() / 4, 4});
|
|
|
|
rpn_rois->mutable_data<T>({bbox_deltas->numel() / 4, 4},
|
|
context.GetPlace());
|
|
rpn_roi_probs->mutable_data<T>({scores->numel(), 1}, context.GetPlace());
|
|
|
|
T *rpn_rois_data = rpn_rois->data<T>();
|
|
T *rpn_roi_probs_data = rpn_roi_probs->data<T>();
|
|
|
|
auto place = BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace());
|
|
auto cpu_place = platform::CPUPlace();
|
|
|
|
int64_t num_proposals = 0;
|
|
std::vector<size_t> offset(1, 0);
|
|
std::vector<int> tmp_num;
|
|
|
|
for (int64_t i = 0; i < num; ++i) {
|
|
Tensor im_info_slice = im_info->Slice(i, i + 1);
|
|
Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
|
|
Tensor scores_slice = scores_swap.Slice(i, i + 1);
|
|
|
|
bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
|
|
scores_slice.Resize({h_score * w_score * c_score, 1});
|
|
|
|
std::pair<Tensor, Tensor> box_score_pair =
|
|
ProposalForOneImage<T>(dev_ctx, im_info_slice, anchors, variances,
|
|
bbox_deltas_slice, scores_slice, pre_nms_top_n,
|
|
post_nms_top_n, nms_thresh, min_size, eta);
|
|
|
|
Tensor &proposals = box_score_pair.first;
|
|
Tensor &scores = box_score_pair.second;
|
|
|
|
memory::Copy(place, rpn_rois_data + num_proposals * 4, place,
|
|
proposals.data<T>(), sizeof(T) * proposals.numel(),
|
|
dev_ctx.stream());
|
|
memory::Copy(place, rpn_roi_probs_data + num_proposals, place,
|
|
scores.data<T>(), sizeof(T) * scores.numel(),
|
|
dev_ctx.stream());
|
|
dev_ctx.Wait();
|
|
num_proposals += proposals.dims()[0];
|
|
offset.emplace_back(num_proposals);
|
|
tmp_num.push_back(proposals.dims()[0]);
|
|
}
|
|
if (context.HasOutput("RpnRoisNum")) {
|
|
auto *rpn_rois_num = context.Output<Tensor>("RpnRoisNum");
|
|
rpn_rois_num->mutable_data<int>({num}, context.GetPlace());
|
|
int *num_data = rpn_rois_num->data<int>();
|
|
memory::Copy(place, num_data, cpu_place, &tmp_num[0], sizeof(int) * num,
|
|
dev_ctx.stream());
|
|
rpn_rois_num->Resize({num});
|
|
}
|
|
framework::LoD lod;
|
|
lod.emplace_back(offset);
|
|
rpn_rois->set_lod(lod);
|
|
rpn_roi_probs->set_lod(lod);
|
|
rpn_rois->Resize({num_proposals, 4});
|
|
rpn_roi_probs->Resize({num_proposals, 1});
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(generate_proposals,
|
|
ops::CUDAGenerateProposalsKernel<
|
|
paddle::platform::CUDADeviceContext, float>);
|