You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
390 lines
15 KiB
390 lines
15 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/detection/nms_util.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
class MatrixNMSOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("BBoxes"), "Input", "BBoxes", "MatrixNMS");
|
|
OP_INOUT_CHECK(ctx->HasInput("Scores"), "Input", "Scores", "MatrixNMS");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "MatrixNMS");
|
|
auto box_dims = ctx->GetInputDim("BBoxes");
|
|
auto score_dims = ctx->GetInputDim("Scores");
|
|
auto score_size = score_dims.size();
|
|
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE_EQ(score_size == 3, true,
|
|
platform::errors::InvalidArgument(
|
|
"The rank of Input(Scores) must be 3. "
|
|
"But received rank = %d.",
|
|
score_size));
|
|
PADDLE_ENFORCE_EQ(box_dims.size(), 3,
|
|
platform::errors::InvalidArgument(
|
|
"The rank of Input(BBoxes) must be 3."
|
|
"But received rank = %d.",
|
|
box_dims.size()));
|
|
PADDLE_ENFORCE_EQ(box_dims[2] == 4, true,
|
|
platform::errors::InvalidArgument(
|
|
"The last dimension of Input (BBoxes) must be 4, "
|
|
"represents the layout of coordinate "
|
|
"[xmin, ymin, xmax, ymax]."));
|
|
PADDLE_ENFORCE_EQ(
|
|
box_dims[1], score_dims[2],
|
|
platform::errors::InvalidArgument(
|
|
"The 2nd dimension of Input(BBoxes) must be equal to "
|
|
"last dimension of Input(Scores), which represents the "
|
|
"predicted bboxes."
|
|
"But received box_dims[1](%s) != socre_dims[2](%s)",
|
|
box_dims[1], score_dims[2]));
|
|
}
|
|
ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
|
|
ctx->SetOutputDim("Index", {box_dims[1], 1});
|
|
if (!ctx->IsRuntime()) {
|
|
ctx->SetLoDLevel("Out", std::max(ctx->GetLoDLevel("BBoxes"), 1));
|
|
ctx->SetLoDLevel("Index", std::max(ctx->GetLoDLevel("BBoxes"), 1));
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Scores"),
|
|
platform::CPUPlace());
|
|
}
|
|
};
|
|
|
|
template <typename T, bool gaussian>
|
|
struct decay_score;
|
|
|
|
template <typename T>
|
|
struct decay_score<T, true> {
|
|
T operator()(T iou, T max_iou, T sigma) {
|
|
return std::exp((max_iou * max_iou - iou * iou) * sigma);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct decay_score<T, false> {
|
|
T operator()(T iou, T max_iou, T sigma) {
|
|
return (1. - iou) / (1. - max_iou);
|
|
}
|
|
};
|
|
|
|
template <typename T, bool gaussian>
|
|
void NMSMatrix(const Tensor& bbox, const Tensor& scores,
|
|
const T score_threshold, const T post_threshold,
|
|
const float sigma, const int64_t top_k, const bool normalized,
|
|
std::vector<int>* selected_indices,
|
|
std::vector<T>* decayed_scores) {
|
|
int64_t num_boxes = bbox.dims()[0];
|
|
int64_t box_size = bbox.dims()[1];
|
|
|
|
auto score_ptr = scores.data<T>();
|
|
auto bbox_ptr = bbox.data<T>();
|
|
|
|
std::vector<int32_t> perm(num_boxes);
|
|
std::iota(perm.begin(), perm.end(), 0);
|
|
auto end = std::remove_if(perm.begin(), perm.end(),
|
|
[&score_ptr, score_threshold](int32_t idx) {
|
|
return score_ptr[idx] <= score_threshold;
|
|
});
|
|
|
|
auto sort_fn = [&score_ptr](int32_t lhs, int32_t rhs) {
|
|
return score_ptr[lhs] > score_ptr[rhs];
|
|
};
|
|
|
|
int64_t num_pre = std::distance(perm.begin(), end);
|
|
if (num_pre <= 0) {
|
|
return;
|
|
}
|
|
if (top_k > -1 && num_pre > top_k) {
|
|
num_pre = top_k;
|
|
}
|
|
std::partial_sort(perm.begin(), perm.begin() + num_pre, end, sort_fn);
|
|
|
|
std::vector<T> iou_matrix((num_pre * (num_pre - 1)) >> 1);
|
|
std::vector<T> iou_max(num_pre);
|
|
|
|
iou_max[0] = 0.;
|
|
for (int64_t i = 1; i < num_pre; i++) {
|
|
T max_iou = 0.;
|
|
auto idx_a = perm[i];
|
|
for (int64_t j = 0; j < i; j++) {
|
|
auto idx_b = perm[j];
|
|
auto iou = JaccardOverlap<T>(bbox_ptr + idx_a * box_size,
|
|
bbox_ptr + idx_b * box_size, normalized);
|
|
max_iou = std::max(max_iou, iou);
|
|
iou_matrix[i * (i - 1) / 2 + j] = iou;
|
|
}
|
|
iou_max[i] = max_iou;
|
|
}
|
|
|
|
if (score_ptr[perm[0]] > post_threshold) {
|
|
selected_indices->push_back(perm[0]);
|
|
decayed_scores->push_back(score_ptr[perm[0]]);
|
|
}
|
|
|
|
decay_score<T, gaussian> decay_fn;
|
|
for (int64_t i = 1; i < num_pre; i++) {
|
|
T min_decay = 1.;
|
|
for (int64_t j = 0; j < i; j++) {
|
|
auto max_iou = iou_max[j];
|
|
auto iou = iou_matrix[i * (i - 1) / 2 + j];
|
|
auto decay = decay_fn(iou, max_iou, sigma);
|
|
min_decay = std::min(min_decay, decay);
|
|
}
|
|
auto ds = min_decay * score_ptr[perm[i]];
|
|
if (ds <= post_threshold) continue;
|
|
selected_indices->push_back(perm[i]);
|
|
decayed_scores->push_back(ds);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class MatrixNMSKernel : public framework::OpKernel<T> {
|
|
public:
|
|
size_t MultiClassMatrixNMS(const Tensor& scores, const Tensor& bboxes,
|
|
std::vector<T>* out, std::vector<int>* indices,
|
|
int start, int64_t background_label,
|
|
int64_t nms_top_k, int64_t keep_top_k,
|
|
bool normalized, T score_threshold,
|
|
T post_threshold, bool use_gaussian,
|
|
float gaussian_sigma) const {
|
|
std::vector<int> all_indices;
|
|
std::vector<T> all_scores;
|
|
std::vector<T> all_classes;
|
|
all_indices.reserve(scores.numel());
|
|
all_scores.reserve(scores.numel());
|
|
all_classes.reserve(scores.numel());
|
|
|
|
size_t num_det = 0;
|
|
auto class_num = scores.dims()[0];
|
|
Tensor score_slice;
|
|
for (int64_t c = 0; c < class_num; ++c) {
|
|
if (c == background_label) continue;
|
|
score_slice = scores.Slice(c, c + 1);
|
|
if (use_gaussian) {
|
|
NMSMatrix<T, true>(bboxes, score_slice, score_threshold, post_threshold,
|
|
gaussian_sigma, nms_top_k, normalized, &all_indices,
|
|
&all_scores);
|
|
} else {
|
|
NMSMatrix<T, false>(bboxes, score_slice, score_threshold,
|
|
post_threshold, gaussian_sigma, nms_top_k,
|
|
normalized, &all_indices, &all_scores);
|
|
}
|
|
for (size_t i = 0; i < all_indices.size() - num_det; i++) {
|
|
all_classes.push_back(static_cast<T>(c));
|
|
}
|
|
num_det = all_indices.size();
|
|
}
|
|
|
|
if (num_det <= 0) {
|
|
return num_det;
|
|
}
|
|
|
|
if (keep_top_k > -1) {
|
|
auto k = static_cast<size_t>(keep_top_k);
|
|
if (num_det > k) num_det = k;
|
|
}
|
|
|
|
std::vector<int32_t> perm(all_indices.size());
|
|
std::iota(perm.begin(), perm.end(), 0);
|
|
|
|
std::partial_sort(perm.begin(), perm.begin() + num_det, perm.end(),
|
|
[&all_scores](int lhs, int rhs) {
|
|
return all_scores[lhs] > all_scores[rhs];
|
|
});
|
|
|
|
for (size_t i = 0; i < num_det; i++) {
|
|
auto p = perm[i];
|
|
auto idx = all_indices[p];
|
|
auto cls = all_classes[p];
|
|
auto score = all_scores[p];
|
|
auto bbox = bboxes.data<T>() + idx * bboxes.dims()[1];
|
|
(*indices).push_back(start + idx);
|
|
(*out).push_back(cls);
|
|
(*out).push_back(score);
|
|
for (int j = 0; j < bboxes.dims()[1]; j++) {
|
|
(*out).push_back(bbox[j]);
|
|
}
|
|
}
|
|
|
|
return num_det;
|
|
}
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* boxes = ctx.Input<LoDTensor>("BBoxes");
|
|
auto* scores = ctx.Input<LoDTensor>("Scores");
|
|
auto* outs = ctx.Output<LoDTensor>("Out");
|
|
auto* index = ctx.Output<LoDTensor>("Index");
|
|
|
|
auto background_label = ctx.Attr<int>("background_label");
|
|
auto nms_top_k = ctx.Attr<int>("nms_top_k");
|
|
auto keep_top_k = ctx.Attr<int>("keep_top_k");
|
|
auto normalized = ctx.Attr<bool>("normalized");
|
|
auto score_threshold = ctx.Attr<float>("score_threshold");
|
|
auto post_threshold = ctx.Attr<float>("post_threshold");
|
|
auto use_gaussian = ctx.Attr<bool>("use_gaussian");
|
|
auto gaussian_sigma = ctx.Attr<float>("gaussian_sigma");
|
|
|
|
auto score_dims = scores->dims();
|
|
auto batch_size = score_dims[0];
|
|
auto num_boxes = score_dims[2];
|
|
auto box_dim = boxes->dims()[2];
|
|
auto out_dim = box_dim + 2;
|
|
|
|
Tensor boxes_slice, scores_slice;
|
|
size_t num_out = 0;
|
|
std::vector<size_t> offsets = {0};
|
|
std::vector<T> detections;
|
|
std::vector<int> indices;
|
|
detections.reserve(out_dim * num_boxes * batch_size);
|
|
indices.reserve(num_boxes * batch_size);
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
scores_slice = scores->Slice(i, i + 1);
|
|
scores_slice.Resize({score_dims[1], score_dims[2]});
|
|
boxes_slice = boxes->Slice(i, i + 1);
|
|
boxes_slice.Resize({score_dims[2], box_dim});
|
|
int start = i * score_dims[2];
|
|
num_out = MultiClassMatrixNMS(
|
|
scores_slice, boxes_slice, &detections, &indices, start,
|
|
background_label, nms_top_k, keep_top_k, normalized, score_threshold,
|
|
post_threshold, use_gaussian, gaussian_sigma);
|
|
offsets.push_back(offsets.back() + num_out);
|
|
}
|
|
|
|
int64_t num_kept = offsets.back();
|
|
if (num_kept == 0) {
|
|
outs->mutable_data<T>({0, out_dim}, ctx.GetPlace());
|
|
index->mutable_data<int>({0, 1}, ctx.GetPlace());
|
|
} else {
|
|
outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
|
|
index->mutable_data<int>({num_kept, 1}, ctx.GetPlace());
|
|
std::copy(detections.begin(), detections.end(), outs->data<T>());
|
|
std::copy(indices.begin(), indices.end(), index->data<int>());
|
|
}
|
|
|
|
framework::LoD lod;
|
|
lod.emplace_back(offsets);
|
|
outs->set_lod(lod);
|
|
index->set_lod(lod);
|
|
}
|
|
};
|
|
|
|
class MatrixNMSOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("BBoxes",
|
|
"(Tensor) A 3-D Tensor with shape "
|
|
"[N, M, 4] represents the predicted locations of M bounding boxes"
|
|
", N is the batch size. "
|
|
"Each bounding box has four coordinate values and the layout is "
|
|
"[xmin, ymin, xmax, ymax], when box size equals to 4.");
|
|
AddInput("Scores",
|
|
"(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
|
|
"predicted confidence predictions. N is the batch size, C is the "
|
|
"class number, M is number of bounding boxes. For each category "
|
|
"there are total M scores which corresponding M bounding boxes. "
|
|
" Please note, M is equal to the 2nd dimension of BBoxes. ");
|
|
AddAttr<int>(
|
|
"background_label",
|
|
"(int, default: 0) "
|
|
"The index of background label, the background label will be ignored. "
|
|
"If set to -1, then all categories will be considered.")
|
|
.SetDefault(0);
|
|
AddAttr<float>("score_threshold",
|
|
"(float) "
|
|
"Threshold to filter out bounding boxes with low "
|
|
"confidence score.");
|
|
AddAttr<float>("post_threshold",
|
|
"(float, default 0.) "
|
|
"Threshold to filter out bounding boxes with low "
|
|
"confidence score AFTER decaying.")
|
|
.SetDefault(0.);
|
|
AddAttr<int>("nms_top_k",
|
|
"(int64_t) "
|
|
"Maximum number of detections to be kept according to the "
|
|
"confidences after the filtering detections based on "
|
|
"score_threshold");
|
|
AddAttr<int>("keep_top_k",
|
|
"(int64_t) "
|
|
"Number of total bboxes to be kept per image after NMS "
|
|
"step. -1 means keeping all bboxes after NMS step.");
|
|
AddAttr<bool>("normalized",
|
|
"(bool, default true) "
|
|
"Whether detections are normalized.")
|
|
.SetDefault(true);
|
|
AddAttr<bool>("use_gaussian",
|
|
"(bool, default false) "
|
|
"Whether to use Gaussian as decreasing function.")
|
|
.SetDefault(false);
|
|
AddAttr<float>("gaussian_sigma",
|
|
"(float) "
|
|
"Sigma for Gaussian decreasing function, only takes effect ",
|
|
"when 'use_gaussian' is enabled.")
|
|
.SetDefault(2.);
|
|
AddOutput("Out",
|
|
"(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
|
|
"detections. Each row has 6 values: "
|
|
"[label, confidence, xmin, ymin, xmax, ymax]. "
|
|
"the offsets in first dimension are called LoD, the number of "
|
|
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
|
|
"no detected bbox.");
|
|
AddOutput("Index",
|
|
"(LoDTensor) A 2-D LoDTensor with shape [No, 1] represents the "
|
|
"index of selected bbox. The index is the absolute index cross "
|
|
"batches.");
|
|
AddComment(R"DOC(
|
|
This operator does multi-class matrix non maximum suppression (NMS) on batched
|
|
boxes and scores.
|
|
In the NMS step, this operator greedily selects a subset of detection bounding
|
|
boxes that have high scores larger than score_threshold, if providing this
|
|
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
|
|
is larger than -1. Then this operator decays boxes score according to the
|
|
Matrix NMS scheme.
|
|
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
|
|
per image if keep_top_k is larger than -1.
|
|
This operator support multi-class and batched inputs. It applying NMS
|
|
independently for each class. The outputs is a 2-D LoDTenosr, for each
|
|
image, the offsets in first dimension of LoDTensor are called LoD, the number
|
|
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
|
|
means there is no detected bbox for this image.
|
|
|
|
For more information on Matrix NMS, please refer to:
|
|
https://arxiv.org/abs/2003.10152
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(
|
|
matrix_nms, ops::MatrixNMSOp, ops::MatrixNMSOpMaker,
|
|
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
|
|
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OP_CPU_KERNEL(matrix_nms, ops::MatrixNMSKernel<float>,
|
|
ops::MatrixNMSKernel<double>);
|