You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
6.8 KiB
174 lines
6.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/dropout_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class DropoutOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Dropout");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
ctx->SetOutputDim("Out", x_dims);
|
|
if (ctx->Attrs().Get<bool>("is_test") == false) {
|
|
ctx->SetOutputDim("Mask", x_dims);
|
|
}
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "The input of dropout op.");
|
|
AddInput("Seed",
|
|
"The seed of dropout op, it has higher priority than the attr "
|
|
"fix_seed and seed")
|
|
.AsDispensable();
|
|
AddOutput("Out", "The output of dropout op.");
|
|
AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate();
|
|
|
|
AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
|
|
.SetDefault(.5f)
|
|
.AddCustomChecker([](const float& drop_p) {
|
|
PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f, true,
|
|
platform::errors::InvalidArgument(
|
|
"'dropout_prob' must be between 0.0 and 1.0."));
|
|
});
|
|
AddAttr<bool>("is_test",
|
|
"(bool, default false) Set to true for inference only, false "
|
|
"for training. Some layers may run faster when this is true.")
|
|
.SetDefault(false);
|
|
AddAttr<bool>("fix_seed",
|
|
"A flag indicating whether to use a fixed seed to generate "
|
|
"random mask. NOTE: DO NOT set this flag to true in "
|
|
"training. Setting this flag to true is only useful in "
|
|
"unittest or for debug that always the same output units "
|
|
"will be dropped.")
|
|
.SetDefault(false);
|
|
AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);
|
|
AddAttr<std::string>(
|
|
"dropout_implementation",
|
|
"[\"downgrade_in_infer\"|\"upscale_in_train\"]"
|
|
"There are two kinds of ways to implement dropout"
|
|
"(the mask below is a tensor have the same shape with input"
|
|
"the value of mask is 0 or 1, the ratio of 0 is dropout_prob)"
|
|
"1. downgrade_in_infer(default), downgrade the outcome at inference "
|
|
"time"
|
|
" train: out = input * mask"
|
|
" inference: out = input * (1.0 - dropout_prob)"
|
|
"2. upscale_in_train, upscale the outcome at training time, do nothing "
|
|
"in inference"
|
|
" train: out = input * mask / ( 1.0 - dropout_prob )"
|
|
" inference: out = input"
|
|
" dropout op can be removed from the program. the program will be "
|
|
"efficient")
|
|
.SetDefault("downgrade_in_infer")
|
|
.AddCustomChecker([](const std::string& type) {
|
|
PADDLE_ENFORCE_EQ(
|
|
type == "downgrade_in_infer" || type == "upscale_in_train", true,
|
|
platform::errors::InvalidArgument(
|
|
"dropout_implementation can only be downgrade_in_infer or "
|
|
"upscale_in_train"));
|
|
});
|
|
|
|
AddComment(R"DOC(
|
|
Dropout Operator.
|
|
|
|
Dropout refers to randomly dropping out units in a nerual network. It is a
|
|
regularization technique for reducing overfitting by preventing neuron
|
|
co-adaption during training. The dropout operator randomly set (according to
|
|
the given dropout probability) the outputs of some units to zero, while others
|
|
are set equal to their corresponding inputs.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class DropoutOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->Attrs().Get<bool>("is_test"), false,
|
|
platform::errors::InvalidArgument(
|
|
"GradOp is only callable when is_test is false"));
|
|
|
|
OP_INOUT_CHECK(ctx->HasInput("Mask"), "Input", "Mask", "DropoutGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
framework::GradVarName("Out"), "DropoutGrad");
|
|
|
|
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), out_dims);
|
|
ctx->ShareLoD(framework::GradVarName("Out"),
|
|
/*->*/ framework::GradVarName("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class DropoutGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("dropout_grad");
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetInput("Mask", this->Output("Mask"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
|
|
ops::DropoutGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::DropoutGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
dropout, ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
dropout_grad,
|
|
ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, double>);
|