You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
236 lines
7.9 KiB
236 lines
7.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <memory.h>
|
|
#include <cstring>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/ddim.h"
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/tensor.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/platform/place.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
/**
|
|
* A thin wrapper for gathering on cpu tensor
|
|
* Return a new tensor from source tensor, gathered according to index
|
|
* input[src]: type-T source Tensor
|
|
* input[index]: type-IndexT index Tensor (1-D)
|
|
* return: output tensor
|
|
*/
|
|
template <typename T, typename IndexT = int>
|
|
void CPUGather(const platform::DeviceContext& ctx, const Tensor& src,
|
|
const Tensor& index, Tensor* output) {
|
|
PADDLE_ENFORCE_EQ(
|
|
platform::is_cpu_place(ctx.GetPlace()), true,
|
|
platform::errors::PreconditionNotMet("It should be running on the CPU."));
|
|
// check index of shape 1-D
|
|
if (index.dims().size() == 2) {
|
|
PADDLE_ENFORCE_EQ(
|
|
index.dims()[1], 1,
|
|
platform::errors::InvalidArgument(
|
|
"index.dims()[1] should be 1 when index.dims().size() = 2"
|
|
"in gather_op, but received value is [%d].",
|
|
index.dims()[1]));
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(index.dims().size(), 1,
|
|
platform::errors::InvalidArgument(
|
|
"index.dims().size() should be 1 or 2 in gather_op,"
|
|
"but received shape's size is [%d].",
|
|
index.dims().size()));
|
|
}
|
|
int64_t index_size = index.dims()[0];
|
|
|
|
auto src_dims = src.dims();
|
|
|
|
const T* p_src = src.data<T>();
|
|
const IndexT* p_index = index.data<IndexT>();
|
|
T* p_output = output->data<T>();
|
|
|
|
// slice size
|
|
int slice_size = 1;
|
|
for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
|
|
|
|
const size_t slice_bytes = slice_size * sizeof(T);
|
|
|
|
for (int64_t i = 0; i < index_size; ++i) {
|
|
IndexT index_ = p_index[i];
|
|
memcpy(p_output + i * slice_size, p_src + index_ * slice_size, slice_bytes);
|
|
}
|
|
}
|
|
|
|
template <typename T, typename IndexT = int>
|
|
void CPUGatherNd(const platform::DeviceContext& ctx, const Tensor& input,
|
|
const Tensor& index, Tensor* output) {
|
|
PADDLE_ENFORCE_EQ(
|
|
platform::is_cpu_place(ctx.GetPlace()), true,
|
|
platform::errors::PreconditionNotMet("It should be running on the CPU."));
|
|
|
|
auto index_dims = index.dims();
|
|
auto index_dims_size = index_dims.size();
|
|
auto input_dims = input.dims();
|
|
auto input_dims_size = input_dims.size();
|
|
|
|
const T* p_input = input.data<T>();
|
|
const IndexT* p_index = index.data<IndexT>();
|
|
T* p_output = output->data<T>();
|
|
|
|
// final dim
|
|
int64_t end_size = index_dims[index_dims_size - 1];
|
|
// remain dim
|
|
auto remain_ddim = framework::slice_ddim(index_dims, 0, index_dims_size - 1);
|
|
int64_t remain_numel = framework::product(remain_ddim);
|
|
// slice size
|
|
int64_t slice_size = 1;
|
|
for (int64_t i = end_size; i < input_dims_size; ++i) {
|
|
slice_size *= input_dims[i];
|
|
}
|
|
const size_t slice_bytes = slice_size * sizeof(T);
|
|
|
|
for (int64_t i = 0; i < remain_numel; ++i) {
|
|
int64_t index_ = 0;
|
|
int64_t temp = 1;
|
|
for (int64_t j = end_size - 1; j >= 0; --j) {
|
|
IndexT index_value = p_index[i * end_size + j];
|
|
PADDLE_ENFORCE_LT(
|
|
index_value, input_dims[j],
|
|
platform::errors::InvalidArgument(
|
|
"Input(index[-1)] has wrong value, it is [%d]", index_value));
|
|
PADDLE_ENFORCE_GE(
|
|
index_value, 0UL,
|
|
platform::errors::InvalidArgument(
|
|
"The value of Input(index) must be no less than 0"));
|
|
|
|
index_ += (index_value * temp);
|
|
temp *= input_dims[j];
|
|
}
|
|
memcpy(p_output + i * slice_size, p_input + index_ * slice_size,
|
|
slice_bytes);
|
|
}
|
|
}
|
|
|
|
template <typename T, typename U, typename V>
|
|
void GatherV2Function(const Tensor* input, const Tensor* index,
|
|
const Tensor* axis, Tensor* out,
|
|
const paddle::platform::Place& place) {
|
|
auto* axis_data = axis->data<V>();
|
|
auto* index_data = index->data<U>();
|
|
|
|
int axis_size = axis->numel();
|
|
int index_size = index->numel();
|
|
int input_size = input->numel();
|
|
auto input_dim = input->dims();
|
|
auto* input_data = input->data<T>();
|
|
|
|
if (input->numel() == 0) return;
|
|
PADDLE_ENFORCE_EQ(axis_size, 1,
|
|
platform::errors::InvalidArgument(
|
|
"Axis size should be 1, but received %d", axis_size));
|
|
int axis_index = axis_data[0];
|
|
|
|
int input_index_dim_size = input_dim[axis_index];
|
|
for (int i = 0; i < index_size; i++) {
|
|
PADDLE_ENFORCE_LT(index_data[i], input_index_dim_size,
|
|
platform::errors::InvalidArgument(
|
|
"The element of Index must be less than the size of "
|
|
"input dim size of axis which is %d, but received "
|
|
"index element which is %d in the %d index.",
|
|
input_index_dim_size, index_data[i], i));
|
|
}
|
|
|
|
int inner_dim_size = 1;
|
|
int outer_dim_size = 1;
|
|
std::vector<int> out_dim_vec;
|
|
|
|
for (int i = 0; i < axis_index; i++) {
|
|
inner_dim_size *= input_dim[i];
|
|
out_dim_vec.push_back(input_dim[i]);
|
|
}
|
|
out_dim_vec.push_back(index_size);
|
|
for (int i = axis_index + 1; i < input_dim.size(); i++) {
|
|
outer_dim_size *= input_dim[i];
|
|
out_dim_vec.push_back(input_dim[i]);
|
|
}
|
|
auto out_dim = framework::make_ddim(out_dim_vec);
|
|
|
|
out->Resize(out_dim);
|
|
auto* out_data = out->mutable_data<T>(place);
|
|
|
|
int out_index = 0;
|
|
for (int i = 0; i < inner_dim_size; i++) {
|
|
for (int j = 0; j < index_size; j++) {
|
|
for (int k = 0; k < outer_dim_size; k++) {
|
|
int index = k + index_data[j] * outer_dim_size +
|
|
(i * input_size / inner_dim_size);
|
|
out_data[out_index] = input_data[index];
|
|
out_index++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, typename U, typename V>
|
|
void GatherV2GradFunction(const Tensor* input, const Tensor* index,
|
|
const Tensor* axis, Tensor* out,
|
|
const paddle::platform::Place& place) {
|
|
auto* axis_data = axis->data<V>();
|
|
auto* index_data = index->data<U>();
|
|
|
|
int axis_size = axis->numel();
|
|
auto input_dim = input->dims();
|
|
auto* input_data = input->data<T>();
|
|
|
|
if (input->numel() == 0) return;
|
|
PADDLE_ENFORCE_EQ(axis_size, 1,
|
|
platform::errors::InvalidArgument(
|
|
"Axis size should be 1, but received %d", axis_size));
|
|
int axis_index = axis_data[0];
|
|
int input_index_dim_size = input_dim[axis_index];
|
|
|
|
int inner_dim_size = 1;
|
|
int outer_dim_size = 1;
|
|
|
|
for (int i = 0; i < axis_index; i++) {
|
|
inner_dim_size *= input_dim[i];
|
|
}
|
|
for (int i = axis_index + 1; i < input_dim.size(); i++) {
|
|
outer_dim_size *= input_dim[i];
|
|
}
|
|
|
|
auto* out_data = out->mutable_data<T>(place);
|
|
auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
|
|
auto out_dim = out->dims();
|
|
int out_index_dim_size = out_dim[axis_index];
|
|
operators::math::set_constant(*dev_ctx, out, 0.0);
|
|
|
|
for (int i = 0; i < inner_dim_size; i++) {
|
|
for (int j = 0; j < input_index_dim_size; j++) {
|
|
for (int k = 0; k < outer_dim_size; k++) {
|
|
int index = k + index_data[j] * outer_dim_size +
|
|
i * outer_dim_size * out_index_dim_size;
|
|
out_data[index] += input_data[j * outer_dim_size + k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|