You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
6.3 KiB
156 lines
6.3 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/index_sample_op.h"
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
class IndexSampleOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "Input(Tensor), dtype support int32/int64/float/double");
|
|
AddInput("Index", "Index(Tensor), dtype support int32/int64");
|
|
AddOutput("Out", "Return the element of input at index");
|
|
|
|
AddComment(R"DOC(
|
|
IndexSample OP returns the element of the specified location of X,
|
|
and the location is specified by Index.
|
|
|
|
X tensor and Index tensor's shape must be 2-D,
|
|
dimension at 0 which usually is batch size must be equal.
|
|
|
|
The returned tensor has the same shape and dimensions as the Index tensor.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class IndexSampleOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Inputs(Input) of FindByIndex should not be null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Index"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Inputs(Index) of FindByIndex should not be null."));
|
|
|
|
auto input_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE_EQ(
|
|
input_dims.size(), 2,
|
|
platform::errors::InvalidArgument(
|
|
"Inputs(X) shape of IndexSample op should be 2-D, but "
|
|
"got X's shape = [%s], please check X shape.",
|
|
input_dims));
|
|
|
|
auto index_dims = ctx->GetInputDim("Index");
|
|
PADDLE_ENFORCE_EQ(
|
|
input_dims.size(), 2,
|
|
platform::errors::InvalidArgument(
|
|
"Inputs(Index) shape of IndexSample op should be 2-D, but "
|
|
"got Index's shape [%s] , please check index shape.",
|
|
input_dims));
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE_EQ(input_dims[0], index_dims[0],
|
|
platform::errors::InvalidArgument(
|
|
"Inputs(X)'s value of dimension 0 must same with "
|
|
"Inputs(Index)'s value of dimension 0, but "
|
|
"got %d of Inputs(X), and got %d of Inputs(Index), "
|
|
"please check Inputs shape.",
|
|
input_dims[0], index_dims[0]));
|
|
}
|
|
ctx->SetOutputDim("Out", index_dims);
|
|
auto type = ctx->GetInputsVarType("Index")[0];
|
|
if (type == framework::proto::VarType::LOD_TENSOR) {
|
|
ctx->ShareLoD("Index", /*->*/ "Out");
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class IndexSampleGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Index"), true,
|
|
platform::errors::InvalidArgument("Input(Index) should be not null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Out@GRAD) should be not null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
|
|
platform::errors::InvalidArgument(
|
|
"Output(X@GRAD) should be not null."));
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto data_type = OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out"));
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class IndexSampleGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("index_sample_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Index", this->Input("Index"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(IndexSampleGradNoNeedBufferVarInferer, "X");
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(index_sample, ops::IndexSampleOp, ops::IndexSampleOpMaker,
|
|
ops::IndexSampleGradMaker<paddle::framework::OpDesc>,
|
|
ops::IndexSampleGradMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(index_sample_grad, ops::IndexSampleGradOp,
|
|
ops::IndexSampleGradNoNeedBufferVarInferer);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
index_sample,
|
|
ops::IndexSampleKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::IndexSampleKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::IndexSampleKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::IndexSampleKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
index_sample_grad,
|
|
ops::IndexSampleGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::IndexSampleGradKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::IndexSampleGradKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::IndexSampleGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
|