You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
4.6 KiB
130 lines
4.6 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/inverse_op.h"
|
|
#include <string>
|
|
#include <unordered_map>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class InverseOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Inverse");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "Inverse");
|
|
|
|
auto input_dims = ctx->GetInputDim("Input");
|
|
int64_t input_rank = input_dims.size();
|
|
PADDLE_ENFORCE_GE(
|
|
input_rank, 2,
|
|
platform::errors::InvalidArgument(
|
|
"The dimension of Input(Input) is expected to be no less than 2. "
|
|
"But recieved: Input(Input)'s dimension = %d, shape = [%s].",
|
|
input_rank, input_dims));
|
|
if (input_dims[input_rank - 2] > 0 && input_dims[input_rank - 1] > 0) {
|
|
PADDLE_ENFORCE_EQ(input_dims[input_rank - 2], input_dims[input_rank - 1],
|
|
platform::errors::InvalidArgument(
|
|
"The last two dimensions are expected to be equal. "
|
|
"But recieved: %d and %d; "
|
|
"Input(Input)'s shape = [%s].",
|
|
input_dims[input_rank - 2],
|
|
input_dims[input_rank - 1], input_dims));
|
|
}
|
|
|
|
ctx->SetOutputDim("Output", input_dims);
|
|
ctx->ShareLoD("Input", /*->*/ "Output");
|
|
}
|
|
};
|
|
|
|
class InverseOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
|
|
protected:
|
|
std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
|
|
const override {
|
|
static std::unordered_map<std::string, std::string> m{
|
|
{"Input", /*->*/ "Output"}};
|
|
return m;
|
|
}
|
|
};
|
|
|
|
class InverseGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
auto input_grad = framework::GradVarName("Input");
|
|
auto output_grad = framework::GradVarName("Output");
|
|
|
|
OP_INOUT_CHECK(ctx->HasInput("Output"), "Input", "Output", "InverseGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput(output_grad), "Input", output_grad,
|
|
"InverseGrad");
|
|
|
|
if (ctx->HasOutput(input_grad)) {
|
|
ctx->SetOutputDim(input_grad, ctx->GetInputDim(output_grad));
|
|
}
|
|
}
|
|
};
|
|
|
|
class InverseOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput(
|
|
"Input",
|
|
"(Tensor) A square matrix (2-D Tensor) or batches of square matrices"
|
|
" to inverse.");
|
|
AddOutput("Output", "(Tensor) The inverse of input matrix.");
|
|
AddComment(R"DOC(
|
|
Inverse Operator
|
|
|
|
Takes the inverse of the square matrix.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class InverseGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> grad) const override {
|
|
grad->SetType(this->ForwardOpType() + "_grad");
|
|
grad->SetInput("Output", this->Output("Output"));
|
|
grad->SetInput(framework::GradVarName("Output"),
|
|
this->OutputGrad("Output"));
|
|
grad->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(inverse, ops::InverseOp, ops::InverseOpMaker,
|
|
ops::InverseOpInferVarType,
|
|
ops::InverseGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::InverseGradOpMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(inverse_grad, ops::InverseGradOp);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
inverse, ops::InverseKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::InverseKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
inverse_grad,
|
|
ops::InverseGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::InverseGradKernel<paddle::platform::CPUDeviceContext, double>);
|