You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
6.7 KiB
182 lines
6.7 KiB
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/reduce_ops/logsumexp_op.h"
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class LogsumexpOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "logsumexp");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "logsumexp");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto x_rank = x_dims.size();
|
|
PADDLE_ENFORCE_LE(x_rank, 4,
|
|
platform::errors::InvalidArgument(
|
|
"The input tensor X's dimensions of logsumexp "
|
|
"should be less equal than 4. But received X's "
|
|
"dimensions = %d, X's shape = [%s].",
|
|
x_rank, x_dims));
|
|
auto axis = ctx->Attrs().Get<std::vector<int>>("axis");
|
|
PADDLE_ENFORCE_GT(
|
|
axis.size(), 0,
|
|
platform::errors::InvalidArgument(
|
|
"The size of axis of logsumexp "
|
|
"should be greater than 0. But received the size of axis "
|
|
"of logsumexp is %d.",
|
|
axis.size()));
|
|
|
|
for (size_t i = 0; i < axis.size(); i++) {
|
|
PADDLE_ENFORCE_LT(
|
|
axis[i], x_rank,
|
|
platform::errors::InvalidArgument(
|
|
"axis[%d] should be in the "
|
|
"range [-dimension(X), dimension(X)] "
|
|
"where dimesion(X) is %d. But received axis[i] = %d.",
|
|
i, x_rank, axis[i]));
|
|
PADDLE_ENFORCE_GE(
|
|
axis[i], -x_rank,
|
|
platform::errors::InvalidArgument(
|
|
"axis[%d] should be in the "
|
|
"range [-dimension(X), dimension(X)] "
|
|
"where dimesion(X) is %d. But received axis[i] = %d.",
|
|
i, x_rank, axis[i]));
|
|
if (axis[i] < 0) {
|
|
axis[i] += x_rank;
|
|
}
|
|
}
|
|
|
|
bool keepdim = ctx->Attrs().Get<bool>("keepdim");
|
|
bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
|
|
auto dims_vector = vectorize(x_dims);
|
|
if (reduce_all) {
|
|
if (keepdim)
|
|
ctx->SetOutputDim(
|
|
"Out", framework::make_ddim(std::vector<int64_t>(x_rank, 1)));
|
|
else
|
|
ctx->SetOutputDim("Out", {1});
|
|
} else {
|
|
auto dims_vector = vectorize(x_dims);
|
|
if (keepdim) {
|
|
for (size_t i = 0; i < axis.size(); ++i) {
|
|
dims_vector[axis[i]] = 1;
|
|
}
|
|
} else {
|
|
const int kDelFlag = -1;
|
|
for (size_t i = 0; i < axis.size(); ++i) {
|
|
dims_vector[axis[i]] = kDelFlag;
|
|
}
|
|
dims_vector.erase(
|
|
std::remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
|
|
dims_vector.end());
|
|
}
|
|
if (!keepdim && dims_vector.size() == 0) {
|
|
dims_vector.push_back(1);
|
|
}
|
|
auto out_dims = framework::make_ddim(dims_vector);
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
if (axis.size() > 0 && axis[0] != 0) {
|
|
// Only pass LoD when not reducing on the first dim.
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class LogsumexpOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor) The input tensor. Tensors with rank at most 4 are "
|
|
"supported.");
|
|
AddOutput("Out", "(Tensor) The result tensor.");
|
|
AddAttr<std::vector<int>>(
|
|
"axis",
|
|
"(list<int>, default {0}) The dimensions to reduce. "
|
|
"Must be in the range [-rank(input), rank(input)). "
|
|
"If `axis[i] < 0`, the axis[i] to reduce is `rank + axis[i]`. "
|
|
"Note that reducing on the first dim will make the LoD info lost.")
|
|
.SetDefault({0});
|
|
AddAttr<bool>("keepdim",
|
|
"(bool, default false) "
|
|
"If true, retain the reduced dimension with length 1.")
|
|
.SetDefault(false);
|
|
AddAttr<bool>("reduce_all",
|
|
"(bool, default false) "
|
|
"If true, output a scalar reduced along all dimensions.")
|
|
.SetDefault(false);
|
|
AddComment(string::Sprintf(R"DOC(
|
|
logsumexp Operator.
|
|
|
|
This operator computes the logsumexp of input tensor along the given axis.
|
|
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
|
|
If reduce_all is true, just reduce along all dimensions and output a scalar.
|
|
|
|
)DOC"));
|
|
}
|
|
};
|
|
|
|
class LogsumexpGrapOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "logsumexp");
|
|
OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "logsumexp");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
"Out@GRAD", "logsumexp");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class LogsumexpGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("logsumexp_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Out", this->Output("Out"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetAttrMap(this->Attrs());
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(logsumexp, ops::LogsumexpOp, ops::LogsumexpOpMaker,
|
|
ops::LogsumexpGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::LogsumexpGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(logsumexp_grad, ops::LogsumexpGrapOp);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
logsumexp, ops::LogsumexpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::LogsumexpKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
logsumexp_grad,
|
|
ops::LogsumexpGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::LogsumexpGradKernel<paddle::platform::CPUDeviceContext, double>);
|