You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
288 lines
11 KiB
288 lines
11 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/tile_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class TileOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Tile");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Tile");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto repeat_times = ctx->Attrs().Get<std::vector<int>>("repeat_times");
|
|
if (repeat_times.size() == 0) {
|
|
repeat_times = std::vector<int>(x_dims.size(), -1);
|
|
}
|
|
|
|
PADDLE_ENFORCE_LE(
|
|
x_dims.size(), MAX_RANK_SUPPORTED,
|
|
platform::errors::InvalidArgument(
|
|
"The rank of the input 'x' for tile op "
|
|
"must not be greater than %d, but the value received is %d.",
|
|
MAX_RANK_SUPPORTED, x_dims.size()));
|
|
PADDLE_ENFORCE_LE(
|
|
repeat_times.size(), MAX_RANK_SUPPORTED,
|
|
platform::errors::InvalidArgument(
|
|
"The size of the shape of input 'repeat_times' for tile op "
|
|
"must not be greater than %d, but the value received is %d.",
|
|
MAX_RANK_SUPPORTED, repeat_times.size()));
|
|
PADDLE_ENFORCE_GE(
|
|
repeat_times.size(), 1,
|
|
platform::errors::InvalidArgument(
|
|
"The size of the shape of input 'repeat_times' for tile op "
|
|
"must be positive integers, but the value received is %d.",
|
|
repeat_times.size()));
|
|
|
|
auto out_rank =
|
|
std::max(static_cast<size_t>(x_dims.size()), repeat_times.size());
|
|
std::vector<int64_t> out_shape(out_rank);
|
|
auto x_dim_vec = framework::vectorize<int>(x_dims);
|
|
if (x_dim_vec.size() > repeat_times.size()) {
|
|
auto diff = x_dim_vec.size() - repeat_times.size();
|
|
repeat_times.insert(repeat_times.begin(), diff, -1);
|
|
} else {
|
|
auto diff = repeat_times.size() - x_dim_vec.size();
|
|
x_dim_vec.insert(x_dim_vec.begin(), diff, -1);
|
|
}
|
|
for (size_t i = 0; i < repeat_times.size(); ++i) {
|
|
if (x_dim_vec[i] == -1 || repeat_times[i] == -1) {
|
|
out_shape[i] = -1;
|
|
} else {
|
|
PADDLE_ENFORCE_GT(
|
|
repeat_times[i], 0,
|
|
platform::errors::InvalidArgument(
|
|
"Every element of the input 'repeat_times' for tile op must be "
|
|
"greater than 0, but the value given is %d.",
|
|
repeat_times[i]));
|
|
out_shape[i] = x_dim_vec[i] * repeat_times[i];
|
|
}
|
|
}
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
|
|
if (out_shape[0] == x_dims[0]) {
|
|
ctx->ShareLoD("X", "Out");
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string& var_name, const Tensor& tensor,
|
|
const framework::OpKernelType& expected_kernel_type) const override {
|
|
if (var_name == "repeat_times_tensor" || var_name == "RepeatTimes") {
|
|
return expected_kernel_type;
|
|
}
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
tensor.place(), tensor.layout());
|
|
}
|
|
};
|
|
|
|
class TileOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor, default Tensor<float>). X is the input to be titled.");
|
|
AddInput(
|
|
"RepeatTimes",
|
|
"(Tensor<int>, optional). If provided, it is the number of repeat times"
|
|
" along specific axis. It has a higher priority than "
|
|
"repeat_times_tensor and the repeat_times attribute.")
|
|
.AsDispensable();
|
|
AddInput("repeat_times_tensor",
|
|
"(Tensor Tensor<int>), repeat times for X."
|
|
"It has a higher priority than repeat_times, but a lower priority "
|
|
"than RepeatTimes")
|
|
.AsDuplicable()
|
|
.AsDispensable();
|
|
AddOutput("Out",
|
|
"(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
|
|
"After tiling, size of each dimension of Output(Out) is equal "
|
|
"to size of the corresponding dimension of Input(X) multiplying "
|
|
"the corresponding value given by Attr(repeat_times).");
|
|
AddAttr<std::vector<int>>("repeat_times",
|
|
"The number of repeat times for each dimension.")
|
|
.SetDefault({});
|
|
AddComment(R"DOC(
|
|
Tile operator repeats the input by given times number. You should set times
|
|
number for each dimension by providing attribute 'repeat_times'. The rank of X
|
|
should be in [1, 6]. Please note that size of 'repeat_times' must be the same
|
|
with X's rank. Following is a using case:
|
|
|
|
Input(X) is a 3-D tensor with shape [2, 3, 1]:
|
|
|
|
[
|
|
[[1], [2], [3]],
|
|
[[4], [5], [6]]
|
|
]
|
|
|
|
Attr(repeat_times): [1, 2, 2]
|
|
|
|
Output(Out) is a 3-D tensor with shape [2, 6, 2]:
|
|
|
|
[
|
|
[[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
|
|
[[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
|
|
]
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class TileGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "TileGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
framework::GradVarName("Out"), "TileGrad");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
std::vector<int> repeat_times =
|
|
ctx->Attrs().Get<std::vector<int>>("repeat_times");
|
|
if (repeat_times.size() == 0) {
|
|
repeat_times = std::vector<int>(x_dims.size(), -1);
|
|
}
|
|
|
|
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
auto x_dim_vec = framework::vectorize<int>(x_dims);
|
|
if (x_dim_vec.size() > repeat_times.size()) {
|
|
auto diff = x_dim_vec.size() - repeat_times.size();
|
|
repeat_times.insert(repeat_times.begin(), diff, -1);
|
|
} else {
|
|
auto diff = repeat_times.size() - x_dim_vec.size();
|
|
x_dim_vec.insert(x_dim_vec.begin(), diff, -1);
|
|
}
|
|
|
|
for (size_t i = 0; i < repeat_times.size(); ++i) {
|
|
if (repeat_times[i] == -1 || x_dim_vec[i] == -1) {
|
|
continue;
|
|
} else {
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE_EQ(
|
|
x_dim_vec[i] * repeat_times[i], out_dims[i],
|
|
platform::errors::InvalidArgument(
|
|
"The size (%d) of the dimension %d of Input(Out@GRAD) should "
|
|
"be equal to the multiplication of the crroresponding "
|
|
"dimension size of Input(X) (%d) and repeat_times (%d).",
|
|
out_dims[i], i, x_dim_vec[i], repeat_times[i]));
|
|
}
|
|
}
|
|
}
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.device_context());
|
|
}
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string& var_name, const Tensor& tensor,
|
|
const framework::OpKernelType& expected_kernel_type) const override {
|
|
if (var_name == "repeat_times_tensor" || var_name == "RepeatTimes") {
|
|
return expected_kernel_type;
|
|
}
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
tensor.place(), tensor.layout());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class TileGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("tile_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetInput("repeat_times_tensor", this->Input("repeat_times_tensor"));
|
|
op->SetInput("RepeatTimes", this->Input("RepeatTimes"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class TileDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("tile");
|
|
op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
|
|
op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
|
|
if (this->HasInput("repeat_times_tensor")) {
|
|
op->SetInput("repeat_times_tensor", this->Input("repeat_times_tensor"));
|
|
}
|
|
if (this->HasInput("RepeatTimes")) {
|
|
op->SetInput("RepeatTimes", this->Input("RepeatTimes"));
|
|
}
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(TileGradNoNeedBufVarsInferer, "X");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(tile, ops::TileOp, ops::TileOpMaker,
|
|
ops::TileGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::TileGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(tile_grad, ops::TileGradOp,
|
|
ops::TileDoubleGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::TileDoubleGradOpMaker<paddle::imperative::OpBase>,
|
|
ops::TileGradNoNeedBufVarsInferer);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
tile, ops::TileKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::TileKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::TileKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::TileKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::TileKernel<paddle::platform::CPUDeviceContext, bool>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
tile_grad, ops::TileGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::TileGradKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::TileGradKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::TileGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
|