You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.9 KiB
186 lines
6.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/top_k_v2_op.h"
|
|
#include <memory>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class TopkV2Op : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of TopkOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of TopkOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Indices"),
|
|
"Output(Indices) of TopkOp should not be null.");
|
|
|
|
auto input_dims = ctx->GetInputDim("X");
|
|
const int& dim_size = input_dims.size();
|
|
int axis = static_cast<int>(ctx->Attrs().Get<int>("axis"));
|
|
PADDLE_ENFORCE_EQ((axis < dim_size) && (axis >= (-1 * dim_size)), true,
|
|
"the axis of topk"
|
|
"must be [-%d, %d), but you set axis is %d",
|
|
dim_size, dim_size, axis);
|
|
|
|
if (axis < 0) axis += dim_size;
|
|
|
|
int k;
|
|
auto k_is_tensor = ctx->HasInput("K");
|
|
if (k_is_tensor) {
|
|
k = -1;
|
|
} else {
|
|
k = static_cast<int>(ctx->Attrs().Get<int>("k"));
|
|
PADDLE_ENFORCE_EQ(k >= 1, true,
|
|
"the attribute of k in the topk must >= 1 or be a "
|
|
"Tensor, but received %d .",
|
|
k);
|
|
}
|
|
|
|
PADDLE_ENFORCE_GE(input_dims.size(), 1,
|
|
"input of topk must have >= 1d shape");
|
|
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE_GE(
|
|
input_dims[axis], k,
|
|
"input of topk op must have >= %d columns in axis of %d", k, axis);
|
|
}
|
|
|
|
framework::DDim dims = input_dims;
|
|
|
|
dims[axis] = k;
|
|
ctx->SetOutputDim("Out", dims);
|
|
ctx->SetOutputDim("Indices", dims);
|
|
ctx->ShareLoD("X", "Out");
|
|
ctx->ShareLoD("X", "Indices");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
framework::LibraryType library_{framework::LibraryType::kPlain};
|
|
framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context(),
|
|
layout_, library_);
|
|
}
|
|
};
|
|
|
|
class TopkV2OpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) The input of Topk op");
|
|
AddInput("K",
|
|
"(Tensor) Number of top elements to look for along "
|
|
"the last dimension (along each row for matrices).")
|
|
.AsDispensable();
|
|
AddOutput("Out", "(Tensor) The output tensor of Topk op");
|
|
AddOutput("Indices", "(Tensor) The indices of Topk elements of input");
|
|
AddComment(R"DOC(
|
|
Top K operator
|
|
|
|
If the input is a vector (1d tensor), this operator finds the k largest
|
|
entries in the vector and outputs their values and indices as vectors.
|
|
Thus values[j] is the j-th largest entry in input, and its index is indices[j].
|
|
|
|
For matrices, this operator computes the top k entries in each row. )DOC");
|
|
AddAttr<int>("k",
|
|
"(int, default 1) Number of top elements to look for along "
|
|
"the tensor).")
|
|
.SetDefault(1);
|
|
AddAttr<int>("axis",
|
|
"the axis to sort and get the k indices, value."
|
|
"if not set, will get k value in last axis.")
|
|
.SetDefault(-1);
|
|
AddAttr<bool>("largest",
|
|
"control flag whether to return largest or smallest")
|
|
.SetDefault(true);
|
|
AddAttr<bool>("sorted",
|
|
"control flag whether to return elements in sorted order")
|
|
.SetDefault(true);
|
|
}
|
|
};
|
|
|
|
class TopkV2OpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("X"), true,
|
|
platform::errors::InvalidArgument("Input(X) should be not null"));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Indices"), true,
|
|
platform::errors::InvalidArgument("Input(Indices) should be not null"));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
|
|
platform::errors::InvalidArgument(
|
|
"Grad Input(Out) should be not null"));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasOutput(framework::GradVarName("X")), true,
|
|
platform::errors::InvalidArgument("Grad Output(X) should be not null"));
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto data_type = OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out"));
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class TopkV2GradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("top_k_v2_grad");
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Indices", this->Output("Indices"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(top_k_v2, ops::TopkV2Op, ops::TopkV2OpMaker,
|
|
ops::TopkV2GradOpMaker<paddle::framework::OpDesc>,
|
|
ops::TopkV2GradOpMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(top_k_v2_grad, ops::TopkV2OpGrad);
|
|
|
|
REGISTER_OP_CPU_KERNEL(top_k_v2,
|
|
ops::TopkV2Kernel<paddle::platform::CPUPlace, float>,
|
|
ops::TopkV2Kernel<paddle::platform::CPUPlace, double>,
|
|
ops::TopkV2Kernel<paddle::platform::CPUPlace, int32_t>,
|
|
ops::TopkV2Kernel<paddle::platform::CPUPlace, int64_t>)
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
top_k_v2_grad, ops::TopkV2GradKernel<paddle::platform::CPUPlace, float>,
|
|
ops::TopkV2GradKernel<paddle::platform::CPUPlace, double>,
|
|
ops::TopkV2GradKernel<paddle::platform::CPUPlace, int32_t>,
|
|
ops::TopkV2GradKernel<paddle::platform::CPUPlace, int64_t>)
|