You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
263 lines
8.8 KiB
263 lines
8.8 KiB
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/platform/for_range.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
struct DiagonalFunctor {
|
|
DiagonalFunctor(const T* input, const int64_t* diag_stride,
|
|
const int64_t* ret_strides, int64_t pos, int64_t dim_size,
|
|
T* diag)
|
|
: input_(input),
|
|
diag_stride_(diag_stride),
|
|
ret_strides_(ret_strides),
|
|
pos_(pos),
|
|
dim_size_(dim_size),
|
|
diag_(diag) {}
|
|
|
|
HOSTDEVICE void operator()(size_t idx) const {
|
|
int64_t position = pos_;
|
|
int64_t num = idx;
|
|
for (int64_t i = 0; i < dim_size_; i++) {
|
|
position += num / diag_stride_[i] * ret_strides_[i];
|
|
num = num % diag_stride_[i];
|
|
}
|
|
diag_[idx] = input_[position];
|
|
}
|
|
|
|
const T* input_;
|
|
const int64_t* diag_stride_;
|
|
const int64_t* ret_strides_;
|
|
int64_t pos_;
|
|
int64_t dim_size_;
|
|
T* diag_;
|
|
};
|
|
|
|
template <typename T>
|
|
struct TraceGradFunctor {
|
|
TraceGradFunctor(const T* d_out, const int64_t* out_stride,
|
|
const int64_t* x_strides, int64_t pos, int64_t dim_size,
|
|
int64_t dim1, int64_t dim2, int64_t diag_size, T* d_x)
|
|
: d_out_(d_out),
|
|
out_stride_(out_stride),
|
|
x_strides_(x_strides),
|
|
pos_(pos),
|
|
dim_size_(dim_size),
|
|
dim1_(dim1),
|
|
dim2_(dim2),
|
|
diag_size_(diag_size),
|
|
d_x_(d_x) {}
|
|
|
|
HOSTDEVICE void operator()(size_t idx) const {
|
|
int64_t num = idx - pos_;
|
|
int64_t position = 0;
|
|
if (num >= 0) {
|
|
int64_t dim1 = 0;
|
|
int64_t dim2 = 0;
|
|
int64_t out_idx = 0;
|
|
for (int64_t i = 0; i < dim_size_; i++) {
|
|
if (i != dim1_ && i != dim2_) {
|
|
position += num / x_strides_[i] * out_stride_[out_idx++];
|
|
} else if (i == dim1_) {
|
|
dim1 = num / x_strides_[i];
|
|
} else {
|
|
dim2 = num / x_strides_[i];
|
|
}
|
|
num = num % x_strides_[i];
|
|
}
|
|
if (dim1 == dim2 && dim1 < diag_size_) {
|
|
d_x_[idx] = d_out_[position];
|
|
}
|
|
}
|
|
}
|
|
const T* d_out_;
|
|
const int64_t* out_stride_;
|
|
const int64_t* x_strides_;
|
|
int64_t pos_;
|
|
int64_t dim_size_;
|
|
int64_t dim1_;
|
|
int64_t dim2_;
|
|
int64_t diag_size_;
|
|
T* d_x_;
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
framework::Tensor Diagonal(const framework::ExecutionContext& context,
|
|
const framework::Tensor* input, int64_t offset,
|
|
int64_t dim1, int64_t dim2) {
|
|
auto* input_data = input->data<T>();
|
|
auto input_dims = input->dims();
|
|
auto input_stride = framework::stride(input_dims);
|
|
auto dim1_ = dim1 < 0 ? input_dims.size() + dim1 : dim1;
|
|
auto dim2_ = dim2 < 0 ? input_dims.size() + dim2 : dim2;
|
|
auto len1 = input_dims[std::min(dim1_, dim2_)];
|
|
auto len2 = input_dims[std::max(dim1_, dim2_)];
|
|
auto stride1 = input_stride[std::min(dim1_, dim2_)];
|
|
auto stride2 = input_stride[std::max(dim1_, dim2_)];
|
|
|
|
int offset_stride = 0;
|
|
if (offset >= 0) {
|
|
offset_stride = stride2;
|
|
len2 -= offset;
|
|
} else {
|
|
offset_stride = stride1;
|
|
len1 += offset;
|
|
}
|
|
int diag_size = len2 < len1 ? len2 : len1;
|
|
|
|
if (diag_size > 0) {
|
|
auto ret_strides = vectorize(input_stride);
|
|
auto ret_dims = vectorize(input_dims);
|
|
ret_strides.erase(ret_strides.begin() + std::max(dim1_, dim2_));
|
|
ret_strides.erase(ret_strides.begin() + std::min(dim1_, dim2_));
|
|
ret_dims.erase(ret_dims.begin() + std::max(dim1_, dim2_));
|
|
ret_dims.erase(ret_dims.begin() + std::min(dim1_, dim2_));
|
|
if (ret_strides.empty()) {
|
|
ret_strides.push_back(1);
|
|
ret_dims.push_back(1);
|
|
}
|
|
ret_strides.push_back(stride1 + stride2);
|
|
ret_dims.push_back(diag_size);
|
|
framework::Tensor diag;
|
|
framework::DDim diag_dims = framework::make_ddim(ret_dims);
|
|
auto dig_stride = framework::stride(diag_dims);
|
|
auto diag_data = diag.mutable_data<T>(diag_dims, context.GetPlace());
|
|
|
|
int64_t pos = std::abs(offset) * offset_stride;
|
|
int64_t dim_size = ret_strides.size();
|
|
#ifdef __NVCC__
|
|
thrust::device_vector<int64_t> diag_vec(vectorize(dig_stride));
|
|
const int64_t* diag_arr = thrust::raw_pointer_cast(diag_vec.data());
|
|
thrust::device_vector<int64_t> ret_vec(ret_strides);
|
|
const int64_t* ret_arr = thrust::raw_pointer_cast(ret_vec.data());
|
|
#else
|
|
auto* diag_arr = dig_stride.Get();
|
|
const auto* ret_arr = ret_strides.data();
|
|
#endif
|
|
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
platform::ForRange<DeviceContext> for_range(dev_ctx, diag.numel());
|
|
DiagonalFunctor<T> functor(input_data, diag_arr, ret_arr, pos, dim_size,
|
|
diag_data);
|
|
for_range(functor);
|
|
return diag;
|
|
} else {
|
|
return {};
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class TraceKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* input = context.Input<framework::Tensor>("Input");
|
|
auto* out = context.Output<framework::Tensor>("Out");
|
|
|
|
const int64_t offset = context.Attr<int>("offset");
|
|
const int64_t dim1 = context.Attr<int>("axis1");
|
|
const int64_t dim2 = context.Attr<int>("axis2");
|
|
|
|
auto output_dims = out->dims();
|
|
|
|
out->mutable_data<T>(context.GetPlace());
|
|
|
|
const framework::Tensor diag =
|
|
Diagonal<DeviceContext, T>(context, input, offset, dim1, dim2);
|
|
if (diag.numel() > 0) {
|
|
auto x = framework::EigenMatrix<T>::Reshape(diag, diag.dims().size() - 1);
|
|
auto output = framework::EigenVector<T>::Flatten(*out);
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
auto reduce_dim = Eigen::array<int, 1>({1});
|
|
output.device(place) = x.sum(reduce_dim);
|
|
out->Resize(output_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class TraceGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const auto* d_out =
|
|
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* d_x =
|
|
context.Output<framework::Tensor>(framework::GradVarName("Input"));
|
|
|
|
int64_t offset = context.Attr<int>("offset");
|
|
int64_t dim1 = context.Attr<int>("axis1");
|
|
int64_t dim2 = context.Attr<int>("axis2");
|
|
|
|
auto input_dims = d_x->dims();
|
|
auto input_stride = framework::stride(input_dims);
|
|
auto output_dims = d_out->dims();
|
|
auto output_stride = framework::stride(output_dims);
|
|
|
|
auto* out_data = d_out->data<T>();
|
|
T* x_data = d_x->mutable_data<T>(context.GetPlace());
|
|
|
|
math::SetConstant<DeviceContext, T> set_zero;
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
set_zero(dev_ctx, d_x, static_cast<T>(0.0));
|
|
|
|
auto dim1_ = dim1 < 0 ? input_dims.size() + dim1 : dim1;
|
|
auto dim2_ = dim2 < 0 ? input_dims.size() + dim2 : dim2;
|
|
auto len1 = input_dims[std::min(dim1_, dim2_)];
|
|
auto len2 = input_dims[std::max(dim1_, dim2_)];
|
|
auto stride1 = input_stride[std::min(dim1_, dim2_)];
|
|
auto stride2 = input_stride[std::max(dim1_, dim2_)];
|
|
|
|
int offset_stride = 0;
|
|
if (offset >= 0) {
|
|
offset_stride = stride2;
|
|
len2 -= offset;
|
|
} else {
|
|
offset_stride = stride1;
|
|
len1 += offset;
|
|
}
|
|
int64_t diag_size = len2 < len1 ? len2 : len1;
|
|
int64_t pos = std::abs(offset) * offset_stride;
|
|
if (diag_size > 0) {
|
|
#ifdef __NVCC__
|
|
thrust::device_vector<int64_t> output_vec(vectorize(output_stride));
|
|
const int64_t* output_arr = thrust::raw_pointer_cast(output_vec.data());
|
|
thrust::device_vector<int64_t> input_vec(vectorize(input_stride));
|
|
const int64_t* input_arr = thrust::raw_pointer_cast(input_vec.data());
|
|
|
|
#else
|
|
const auto* output_arr = output_stride.Get();
|
|
const auto* input_arr = input_stride.Get();
|
|
#endif
|
|
|
|
platform::ForRange<DeviceContext> for_range(dev_ctx, d_x->numel());
|
|
TraceGradFunctor<T> functor(out_data, output_arr, input_arr, pos,
|
|
input_dims.size(), dim1_, dim2_, diag_size,
|
|
x_data);
|
|
for_range(functor);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|