You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/platform/cudnn_desc.h

260 lines
7.3 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "paddle/fluid/platform/cudnn_helper.h"
namespace paddle {
namespace framework {
class Tensor;
} // namespace framework
} // namespace paddle
namespace paddle {
namespace platform {
using framework::Tensor;
template <typename T>
inline cudnnDataType_t ToCudnnDataType(const T& t) {
auto type = framework::ToDataType(t);
return ToCudnnDataType(type);
}
inline std::vector<int> TransformDimOrder(const std::vector<int>& dims) {
std::vector<int> transformed_dims(dims.begin(), dims.end());
int H, W, D, C;
if (dims.size() == 4) {
H = dims[1];
W = dims[2];
C = dims[3];
transformed_dims[1] = C;
transformed_dims[2] = H;
transformed_dims[3] = W;
} else {
D = dims[1];
H = dims[2];
W = dims[3];
C = dims[4];
transformed_dims[1] = C;
transformed_dims[2] = D;
transformed_dims[3] = H;
transformed_dims[4] = W;
}
return transformed_dims;
}
template <>
inline cudnnDataType_t ToCudnnDataType(
const framework::proto::VarType::Type& t) {
cudnnDataType_t type = CUDNN_DATA_FLOAT;
switch (t) {
case framework::proto::VarType::FP16:
type = CUDNN_DATA_HALF;
break;
case framework::proto::VarType::FP32:
type = CUDNN_DATA_FLOAT;
break;
case framework::proto::VarType::FP64:
type = CUDNN_DATA_DOUBLE;
break;
default:
break;
}
return type;
}
class ActivationDescriptor {
public:
using T = cudnnActivationStruct;
struct Deleter {
void operator()(T* t) {
if (t != nullptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
dynload::cudnnDestroyActivationDescriptor(t));
t = nullptr;
}
}
};
ActivationDescriptor() {
T* raw_ptr;
PADDLE_ENFORCE_CUDA_SUCCESS(
dynload::cudnnCreateActivationDescriptor(&raw_ptr));
desc_.reset(raw_ptr);
}
template <typename T>
void set(cudnnActivationMode_t mode, const T& coef) {
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetActivationDescriptor(
desc_.get(), mode, CUDNN_NOT_PROPAGATE_NAN, static_cast<double>(coef)));
}
T* desc() { return desc_.get(); }
T* desc() const { return desc_.get(); }
private:
std::unique_ptr<T, Deleter> desc_;
};
class TensorDescriptor {
public:
using T = cudnnTensorStruct;
struct Deleter {
void operator()(T* t) {
if (t != nullptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyTensorDescriptor(t));
t = nullptr;
}
}
};
TensorDescriptor() {
T* raw_ptr;
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateTensorDescriptor(&raw_ptr));
desc_.reset(raw_ptr);
}
T* desc() { return desc_.get(); }
T* desc() const { return desc_.get(); }
void set(const Tensor& tensor, const int groups = 1) {
auto dims = framework::vectorize<int>(tensor.dims());
std::vector<int> strides(dims.size());
strides[dims.size() - 1] = 1;
for (int i = dims.size() - 2; i >= 0; i--) {
strides[i] = dims[i + 1] * strides[i + 1];
}
std::vector<int> dims_with_group(dims.begin(), dims.end());
if (groups > 1) {
dims_with_group[1] = dims_with_group[1] / groups;
}
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
desc_.get(), ToCudnnDataType(tensor.type()), dims_with_group.size(),
dims_with_group.data(), strides.data()));
}
void set(const Tensor& tensor, const cudnnTensorFormat_t format) {
auto dims = framework::vectorize<int>(tensor.dims());
std::vector<int> transformed_dims;
if (format == CUDNN_TENSOR_NHWC) {
transformed_dims = TransformDimOrder(dims);
} else {
transformed_dims = dims;
}
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptorEx(
desc_.get(), format, ToCudnnDataType(tensor.type()),
transformed_dims.size(), transformed_dims.data()));
}
private:
std::unique_ptr<T, Deleter> desc_;
};
class FilterDescriptor {
public:
using T = cudnnFilterStruct;
struct Deleter {
void operator()(T* t) {
if (t != nullptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyFilterDescriptor(t));
t = nullptr;
}
}
};
FilterDescriptor() {
T* raw_ptr;
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateFilterDescriptor(&raw_ptr));
desc_.reset(raw_ptr);
}
T* desc() { return desc_.get(); }
T* desc() const { return desc_.get(); }
void set(const Tensor& tensor, const cudnnTensorFormat_t format,
const int groups = 1) {
auto dims = framework::vectorize<int>(tensor.dims());
std::vector<int> transformed_dims;
if (format == CUDNN_TENSOR_NHWC) {
transformed_dims = TransformDimOrder(dims);
} else {
transformed_dims = dims;
}
if (groups > 1) {
transformed_dims[1] = transformed_dims[1] / groups;
}
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetFilterNdDescriptor(
desc_.get(), ToCudnnDataType(tensor.type()), format,
transformed_dims.size(), transformed_dims.data()));
}
private:
std::unique_ptr<T, Deleter> desc_;
};
class ConvolutionDescriptor {
public:
using T = cudnnConvolutionStruct;
struct Deleter {
void operator()(T* t) {
if (t != nullptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
dynload::cudnnDestroyConvolutionDescriptor(t));
t = nullptr;
}
}
};
ConvolutionDescriptor() {
T* raw_ptr;
PADDLE_ENFORCE_CUDA_SUCCESS(
dynload::cudnnCreateConvolutionDescriptor(&raw_ptr));
desc_.reset(raw_ptr);
}
T* desc() { return desc_.get(); }
T* desc() const { return desc_.get(); }
void set(cudnnDataType_t dtype, const std::vector<int>& pads,
const std::vector<int>& strides, const std::vector<int>& dilations,
const int groups = 1) {
cudnnDataType_t compute_type =
(dtype == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
T* desc = desc_.get();
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetConvolutionNdDescriptor(
desc, pads.size(), pads.data(), strides.data(), dilations.data(),
CUDNN_CROSS_CORRELATION, compute_type));
#if CUDNN_VERSION_MIN(7, 0, 1)
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnSetConvolutionGroupCount(desc, groups));
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
desc, CUDNN_DEFAULT_MATH));
if (dtype == CUDNN_DATA_HALF) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnSetConvolutionMathType(desc,
CUDNN_TENSOR_OP_MATH));
}
#endif
#endif
}
private:
std::unique_ptr<T, Deleter> desc_;
};
} // namespace platform
} // namespace paddle