You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
6.0 KiB
188 lines
6.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "inference.h"
|
|
#include <fstream>
|
|
#include "paddle/framework/executor.h"
|
|
#include "paddle/framework/init.h"
|
|
#include "paddle/framework/scope.h"
|
|
|
|
namespace paddle {
|
|
|
|
void InferenceEngine::LoadInferenceModel(const std::string& dirname) {
|
|
std::string model_filename = dirname + "/__model__";
|
|
LOG(INFO) << "loading model from " << model_filename;
|
|
std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary);
|
|
std::string program_desc_str;
|
|
inputfs.seekg(0, std::ios::end);
|
|
program_desc_str.resize(inputfs.tellg());
|
|
inputfs.seekg(0, std::ios::beg);
|
|
LOG(INFO) << "program_desc_str's size: " << program_desc_str.size();
|
|
inputfs.read(&program_desc_str[0], program_desc_str.size());
|
|
inputfs.close();
|
|
|
|
program_ = new framework::ProgramDesc(program_desc_str);
|
|
GenerateLoadProgram(dirname);
|
|
|
|
framework::BlockDesc* global_block = program_->MutableBlock(0);
|
|
feed_var_names_.clear();
|
|
fetch_var_names_.clear();
|
|
for (auto* op : global_block->AllOps()) {
|
|
if (op->Type() == "feed") {
|
|
feed_var_names_.insert(feed_var_names_.begin(), op->Output("Out")[0]);
|
|
} else if (op->Type() == "fetch") {
|
|
fetch_var_names_.push_back(op->Input("X")[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool InferenceEngine::IsParameter(const framework::VarDesc* var) {
|
|
if (var->Persistable()) {
|
|
// There are many unreachable variables in the program
|
|
for (size_t i = 0; i < program_->Size(); ++i) {
|
|
const framework::BlockDesc& block = program_->Block(i);
|
|
for (auto* op : block.AllOps()) {
|
|
if (op->Type() == "feed") {
|
|
continue;
|
|
}
|
|
for (auto input_argument_name : op->InputArgumentNames()) {
|
|
if (input_argument_name == var->Name()) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void InferenceEngine::GenerateLoadProgram(const std::string& dirname) {
|
|
framework::BlockDesc* global_block = program_->MutableBlock(0);
|
|
|
|
load_program_ = new framework::ProgramDesc();
|
|
framework::BlockDesc* load_block = load_program_->MutableBlock(0);
|
|
for (auto* var : global_block->AllVars()) {
|
|
if (IsParameter(var)) {
|
|
LOG(INFO) << "parameter's name: " << var->Name();
|
|
|
|
framework::VarDesc* new_var = load_block->Var(var->Name());
|
|
new_var->SetShape(var->Shape());
|
|
new_var->SetDataType(var->GetDataType());
|
|
new_var->SetType(var->GetType());
|
|
new_var->SetLoDLevel(var->GetLoDLevel());
|
|
new_var->SetPersistable(true);
|
|
|
|
// append_op
|
|
framework::OpDesc* op = load_block->AppendOp();
|
|
op->SetType("load");
|
|
op->SetOutput("Out", {new_var->Name()});
|
|
op->SetAttr("file_path", {dirname + "/" + new_var->Name()});
|
|
op->CheckAttrs();
|
|
}
|
|
}
|
|
}
|
|
|
|
void InferenceEngine::PrependFeedOp() {
|
|
if (!program_) {
|
|
LOG(FATAL) << "Please initialize the program_ first.";
|
|
}
|
|
|
|
framework::BlockDesc* global_block = program_->MutableBlock(0);
|
|
|
|
// create_var
|
|
framework::VarDesc* feed_var = global_block->Var("feed");
|
|
feed_var->SetType(framework::proto::VarDesc::FEED_MINIBATCH);
|
|
feed_var->SetPersistable(true);
|
|
|
|
// prepend feed_op
|
|
for (size_t i = 0; i < feed_var_names_.size(); ++i) {
|
|
std::string var_name = feed_var_names_[i];
|
|
LOG(INFO) << "feed var's name: " << var_name;
|
|
|
|
// prepend_op
|
|
framework::OpDesc* op = global_block->PrependOp();
|
|
op->SetType("feed");
|
|
op->SetInput("X", {"feed"});
|
|
op->SetOutput("Out", {var_name});
|
|
op->SetAttr("col", {static_cast<int>(i)});
|
|
op->CheckAttrs();
|
|
}
|
|
}
|
|
|
|
void InferenceEngine::AppendFetchOp() {
|
|
if (!program_) {
|
|
LOG(FATAL) << "Please initialize the program_ first.";
|
|
}
|
|
|
|
framework::BlockDesc* global_block = program_->MutableBlock(0);
|
|
|
|
// create_var
|
|
framework::VarDesc* fetch_var = global_block->Var("fetch");
|
|
fetch_var->SetType(framework::proto::VarDesc::FETCH_LIST);
|
|
fetch_var->SetPersistable(true);
|
|
|
|
// append fetch_op
|
|
for (size_t i = 0; i < fetch_var_names_.size(); ++i) {
|
|
std::string var_name = fetch_var_names_[i];
|
|
LOG(INFO) << "fetch var's name: " << var_name;
|
|
|
|
// append_op
|
|
framework::OpDesc* op = global_block->AppendOp();
|
|
op->SetType("fetch");
|
|
op->SetInput("X", {var_name});
|
|
op->SetOutput("Out", {"fetch"});
|
|
op->SetAttr("col", {static_cast<int>(i)});
|
|
op->CheckAttrs();
|
|
}
|
|
}
|
|
|
|
void InferenceEngine::Execute(const std::vector<framework::LoDTensor>& feeds,
|
|
std::vector<framework::LoDTensor>& fetchs) {
|
|
if (!program_ || !load_program_) {
|
|
LOG(FATAL) << "Please initialize the program_ and load_program_ first.";
|
|
}
|
|
|
|
if (feeds.size() != feed_var_names_.size()) {
|
|
LOG(FATAL) << "Please feed " << feed_var_names_.size() << " input Tensors.";
|
|
}
|
|
|
|
auto* place = new platform::CPUPlace();
|
|
framework::InitDevices();
|
|
framework::Executor* executor = new framework::Executor(*place);
|
|
framework::Scope* scope = new framework::Scope();
|
|
|
|
executor->Run(*load_program_, scope, 0, true, true);
|
|
|
|
std::map<std::string, const framework::LoDTensor*> feed_targets;
|
|
std::map<std::string, framework::LoDTensor*> fetch_targets;
|
|
|
|
// set_feed_variable
|
|
for (size_t i = 0; i < feed_var_names_.size(); ++i) {
|
|
feed_targets[feed_var_names_[i]] = &feeds[i];
|
|
}
|
|
|
|
// get_fetch_variable
|
|
fetchs.resize(fetch_var_names_.size());
|
|
for (size_t i = 0; i < fetch_var_names_.size(); ++i) {
|
|
fetch_targets[fetch_var_names_[i]] = &fetchs[i];
|
|
}
|
|
|
|
executor->Run(*program_, scope, feed_targets, fetch_targets);
|
|
|
|
delete place;
|
|
delete scope;
|
|
delete executor;
|
|
}
|
|
} // namespace paddle
|