53 lines
1.9 KiB
53 lines
1.9 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
|
|
/*
|
|
* MulOp, IMatrixMultiplyLayer in TRT. This Layer doesn't has weights.
|
|
*/
|
|
class MulOpConverter : public OpConverter {
|
|
public:
|
|
void operator()(const framework::proto::OpDesc& op,
|
|
const framework::Scope& scope, bool test_mode) override {
|
|
VLOG(4) << "convert a fluid mul op to tensorrt mul layer without bias";
|
|
|
|
framework::OpDesc op_desc(op, nullptr);
|
|
// Declare inputs
|
|
auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
|
|
auto* input2 = engine_->GetITensor(op_desc.Input("Y")[0]);
|
|
// Both the input1 and input2 do not need transpose.
|
|
auto* layer = TRT_ENGINE_ADD_LAYER(
|
|
engine_, MatrixMultiply, *const_cast<nvinfer1::ITensor*>(input1), false,
|
|
*const_cast<nvinfer1::ITensor*>(input2), false);
|
|
|
|
auto output_name = op_desc.Output("Out")[0];
|
|
engine_->SetITensor(output_name, layer->getOutput(0));
|
|
if (test_mode) { // the test framework can not determine which is the
|
|
// output, so place the declaration inside.
|
|
engine_->DeclareOutput(output_name);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|
|
|
|
REGISTER_TRT_OP_CONVERTER(mul, MulOpConverter);
|