You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
5.2 KiB
129 lines
5.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/edit_distance_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class EditDistanceOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Hyps"), "Input(Hyps) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Refs"), "Input(Refs) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("SequenceNum"),
|
|
"Output(SequenceNum) shouldn't be null.");
|
|
auto hyp_dims = ctx->GetInputDim("Hyps");
|
|
auto ref_dims = ctx->GetInputDim("Refs");
|
|
|
|
if (ctx->HasInput("HypsLength") && ctx->HasInput("RefsLength")) {
|
|
auto hyp_length_dims = ctx->GetInputDim("HypsLength");
|
|
auto ref_length_dims = ctx->GetInputDim("RefsLength");
|
|
|
|
PADDLE_ENFORCE(hyp_dims.size() == 2 && ref_dims.size() == 2 &&
|
|
hyp_dims[0] == ref_dims[0],
|
|
"Input(Hyps) and Input(Refs) must be 2-D Tensors with "
|
|
"identical first dimension");
|
|
PADDLE_ENFORCE(hyp_length_dims[0] == ref_length_dims[0] &&
|
|
hyp_length_dims[0] == hyp_dims[0],
|
|
"Input(HypsLength), Input(RefsLength) and Input(Hyps) "
|
|
"should have identical first dimension");
|
|
} else {
|
|
PADDLE_ENFORCE(
|
|
hyp_dims.size() == 2 && hyp_dims[1] == 1,
|
|
"Input(Hyps) must be a 2-D LoDTensor with the 2nd dimension "
|
|
"equal to 1.");
|
|
PADDLE_ENFORCE(
|
|
ref_dims.size() == 2 && ref_dims[1] == 1,
|
|
"Input(Refs) must be a 2-D LoDTensor with the 2nd dimension "
|
|
"equal to 1.");
|
|
}
|
|
|
|
ctx->SetOutputDim("Out", ctx->GetInputDim("Refs"));
|
|
ctx->SetOutputDim("SequenceNum", {1});
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(framework::proto::VarType::FP32,
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Hyps",
|
|
"2-D Tensor<int64_t>, or 2-D LoDTensor<int64_t> with last "
|
|
"dimension being 1. "
|
|
"The indices for hypothesis strings.");
|
|
AddInput("Refs",
|
|
"2-D Tensor<int64_t>, or 2-D LoDTensor<int64_t> with last "
|
|
"dimension being 1. "
|
|
"The indices for reference strings.");
|
|
AddInput("HypsLength",
|
|
"1-D Tensor<int64_t>. "
|
|
"Sequence length for hyps when hyps is a tensor")
|
|
.AsDispensable();
|
|
AddInput("RefsLength",
|
|
"1-D Tensor<int64_t>. "
|
|
"Sequence length for refs when refs is a tensor")
|
|
.AsDispensable();
|
|
AddOutput("SequenceNum", "The sequence count of current batch");
|
|
AddAttr<bool>("normalized",
|
|
"(bool, default false) Indicated whether to normalize "
|
|
"the edit distance by the length of reference string.")
|
|
.SetDefault(false);
|
|
AddOutput("Out",
|
|
"(2-D Tensor with shape [`batch_size` x 1]) "
|
|
"The output edit distances of EditDistance operator.");
|
|
AddComment(R"DOC(
|
|
|
|
EditDistance operator computes the edit distances between a batch of hypothesis
|
|
strings and their references.
|
|
|
|
Edit distance, also called Levenshtein distance, measures how dissimilar two strings
|
|
are by counting the minimum number of operations to transform one string into anthor.
|
|
Here the operations include insertion, deletion, and substitution. For example,
|
|
given hypothesis string A = "kitten" and reference B = "sitting", the edit distance
|
|
is 3 for A will be transformed into B at least after two substitutions and one
|
|
insertion:
|
|
|
|
"kitten" -> "sitten" -> "sittin" -> "sitting"
|
|
|
|
Input(Hyps) is a 2-D Tensor or a 2-D LoDTensor consisting of all the hypothesis strings.
|
|
And the `batch_size` reference strings are arranged in order in the same way in the
|
|
Input(Refs).
|
|
|
|
Output(Out) contains the `batch_size` results and each stands for the edit distance
|
|
for a pair of strings respectively. If Attr(normalized) is true, the edit distance
|
|
will be divided by the length of reference string.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(edit_distance, ops::EditDistanceOp, ops::EditDistanceOpMaker,
|
|
paddle::framework::EmptyGradOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
edit_distance, ops::EditDistanceKernel<paddle::platform::CPUPlace, float>);
|